Responsive image
博碩士論文 etd-0521118-112626 詳細資訊
Title page for etd-0521118-112626
論文名稱
Title
以積層製造製備孔洞Ti-6Al-4V合金骨材植入物之結構與機性研究
Microstructure and mechanical properties of porous Ti-6Al-4V alloys for bone implants fabricated by additive manufacturing
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
223
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-06-10
繳交日期
Date of Submission
2018-06-21
關鍵字
Keywords
電子束熔融法、鈦合金、孔隙率、機械性質、積層製造、選擇性雷射熔融法
additive manufacturing, porosity, mechanical property, Ti alloy, selective laser melting, electron beam melting
統計
Statistics
本論文已被瀏覽 5708 次,被下載 32
The thesis/dissertation has been browsed 5708 times, has been downloaded 32 times.
中文摘要
近幾年,積層製造也稱為快速成型或3D列印是個蓬勃發展的產業。因為其具有一些特點,例如:減少製程步驟、客製化複雜結構,適合來製造仿生的植入物。其中又以人體骨頭的應用最為廣泛研究。然而,骨頭是主要承受人類運動的部位,會隨著年齡、性別與部位而改變的孔洞結構。因此,多種的仿生植入物的機械性質與孔洞結構之關係研究其為重要。

在此研究中,我們分別使用積層製造中的選擇性雷射熔融法(SLM)和電子束熔融法(EBM)製備出仿生植入孔洞骨材。以高生物相容性的Ti-6Al-4V合金作為實驗的材料。

第一,藉由電腦輔助設計(CAD)不同孔隙度的結構,並且以Ti-6Al-4V金屬粉體,利用選擇性雷射熔融法(SLM)製備出Ti-6Al-4V孔洞結構。並在詳細的形貌觀察與CAD模型比較、物理性質測量、機械性質量測後,推導出其相關的關係。因為雷射束寬化和雷射熔融邊界效應,在CAD模型與孔洞SLM試片差異為在SLM試片有較大的支架與較小的孔洞。而在高孔隙率試片具有較多孔洞密度下,此差異會較為明顯而導致設計的孔隙度會大於實際的孔洞試片之孔隙率。若縮小雷射束與粉體大小,能降低此差異性。然而用SLM技術製備出的Ti-6Al-4V結構為具有較高的硬度利於抗磨耗性,有利於人體骨材之應用。隨著孔洞結構之孔隙率提高,其機械性質(彈性模數與降伏強度)會隨之降低,而彈性模數能匹配到人體骨頭,避免應力遮蔽效應之風險。利用Gibson and Ashby方程式,利用SLM技術製備的孔洞材料其孔洞率與機械性質的關係式可被描述與預測。

根據許多先前的研究,高孔隙率的孔洞結構,能有效降低應力遮蔽問題,但其機械強度也是會隨之降低。第二部分,利用EBM製備出高孔隙率的孔洞Ti-6Al-4V結構,並探討其物理性質、機械性質。從此研究結果的得知,當藉由提高孔洞支架與孔洞大小,其孔洞率幾乎維持相近的高孔隙率80%。而利用EBM製備出高孔隙率的孔洞結構其彈性模數,也相當匹配到人體海綿骨材的彈性模數。但從結果可以發現,較大支架的孔洞試片能增強其耐破裂能力。因此我們推導出孔洞支架與其破壞能量之關係式,從關係式可以發現當孔洞支架寬度小於401微米時,其孔洞結構幾乎無法承受能量而破壞。然而積層製造(AM)因其基本上為粉末冶金的技術,其孔洞試片具有粗糙度的表面,其會造成應力集中,而提早破壞。因此,在此研究中推導出孔洞支架寬度和粗糙度之比例對應到破壞能量之關係式,從關係式可以發現當支架寬度越大,其粗糙度對破壞能量影響越小,對於支架寬度約為650微米時,其最大接受之表面粗糙度不能大於91微米,否則孔洞結構也幾乎無法承受能量而破壞。

將實驗結果導入物理公式並推演出SLM與EBM製備出的孔洞結構對應之機械性質的關係式,期待以此關係式可在使用此技術製備出的仿生植入物,能在材料被應用前來預估其機械性質,有效提高其實際應用的價值。
Abstract
In recent years, additive manufacture (AM), or called as rapid prototyping or 3D printing, has become a flourishing industry suitable to fabricate bio-implants, due to the benefits such as the reduction in process steps, complexity of parts, and customization. Among of them, the application of human bone has been most widely studied. However, the bone is a porous structure, subjected to wide variations as a result of human movement and inevitable changes with age, sex, and location. Therefore, it is important to study the relationship between the porous structure and mechanical properties of various bionic implants.

In this study, we used the selective laser melting (SLM) and electron beam melting (EBM) methods to produce porous structures of bone bio-implants. The highly biocompatible Ti-6Al-4V alloy was applied as experimental.

For the first part, using Ti-6Al-4V alloy powders, the Ti-6Al-4V porous samples were fabricated by SLM, with the help from computer-aided design (CAD) for different porosities. Compared with the CAD models and porous samples fabricated by SLM, the relevant relationships are characterized with morphology, physical properties and mechanical properties. The difference between the CAD model and porous SLM parts leads to the larger ligament widths and smaller pore sizes for SLM parts, due to the laser beam broadening and laser melting edge effects. Due to the higher porosity samples with a higher pore number density, this difference between the CAD model and porous SLM parts could be more obvious, so that the designed porosity will be greater than that of the actual porosity of porous samples. The difference can be reduced by decreasing the size of laser beam and the used powders. The structure of Ti-6Al-4V prepared by SLM was seen to possess higher hardness favorable for wear resistance and beneficial for the application of human bone implant. The mechanical properties (elastic modulus and yield strength) of porous SLM parts decrease with increasing porosity, matching well with the human bone. In terms of the matched elastic modulus, it can avoid the risk of stress shielding effect. By applying the Gibson and Ashby model, the relationship between porosity and mechanical properties of SLM porous foams can be described and predicted.

According to many previous studies, the porous samples with high porosity can effectively reduce the stress shielding problem, but mechanical strength would also be reduced. For the second part, the high porosity of porous Ti-6Al-4V samples are fabricated by EBM, and the physical and mechanical properties are characterized. The results indicate that the porosity of porous parts can be as high as near 80% by increasing the ligament and pore size. The elastic modulus of such EBM porous Ti-6Al-4V structure with high porosity is found to match well with that of the human cancellous bone. However, it can obviously be seen that the higher ligament width of porous samples will enhance the endurance to fracture. Therefore, the relationship between the ligament width and work of fracture is systematically studied. According to the relation, it is concluded that when the ligament width is smaller than 401 μm, the porous structure cannot bear any strength for fracture. However, because the AM is basically a powder metallurgy technique, the porous samples would be inherent with rough surface, prone to cause stress concentration and premature fracture. Therefore, the relationship between the ratio of the ligament width and surface roughness corresponding to the fracture energy is derived in this study. From this relation, the fracture energy of porous samples with the larger ligament width will be less affected by the surface roughness. For an average ligament width of about 650 μm, the maximum acceptable surface roughness cannot be greater than 91 μm; otherwise, the porous sample can barely withstand the energy to fracture.

The experimental results are imported into the physical formulae and the relationships between the mechanical properties corresponding to the porous structure prepared by SLM and EBM are deduced. It is expected that these relationships can be used to prepare bionic implants using those processes to estimate its mechanical properties before the implants can be applied, effectively increase the value of their practical application.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 v
Abstract vii
Content x
List of tables xv
List of figures xviii
Chapter 1 Introduction 1
1.1 Additive manufacturing 1
1.2 Porous materials 2
1.3 Motivation 3
Chapter 2 Background and literature review 5
2.1 Introduction of additive manufacturing technology 5
2.2 Classification the AM process 5
2.2.1 Liquid polymer systems 5
2.2.1.1 Stereolithography (SL) 6
2.2.1.2 Solid ground curing (SGC) 6
2.2.2 Molten material systems 7
2.2.2.1 Fused deposition modeling (FDM) 7
2.2.2.2 Shape deposition manufacturing (SDM) 8
2.2.3 Solid sheet systems 8
2.2.3.1 Laminated object manufacturing (LOM) 8
2.2.3.2 Solid foil polymerization (SFP) 9
2.2.4 Discrete particles systems 9
2.2.4.1 Selective laser sintering (SLS) 9
2.2.4.2 Selective laser melting (SLM) 10
2.2.4.2 Electron beam melting (EBM) 11
2.3 Characteristics and formation of AM metal powders 12
2.4 Metal and its alloys for biomedical materials 13
2.5 Mechanical properties of biomedical materials 14
2.5.1 Stress shielding effect 14
2.5.2 Wear resistance 16
2.5.3 Fracture toughness 16
2.6 Introduction of titanium (Ti) and alloys 20
2.6.1 Alpha (α) stabilizers and α-type Ti-based alloys 21
2.6.2 Beta (β) stabilizers and β-type Ti-based alloys 22
2.6.3 α+β Ti-based alloys 23
2.7 Porous titanium and its alloys 24
2.8 Fabrication methods for porous Ti-based alloys 25
2.8.1 Loose sintering of powder 26
2.8.2 Space holder method 27
2.8.3 Spark plasma sintering 28
2.8.4 Multilayer porous titanium 30
2.8.5 Additive manufacturing 30
2.9 Mechanical properties for porous Ti-based alloys fabricated by AM 31
Chapter 3 Experimental procedures 35
3.1 Raw material of Ti-6Al-4V powders 35
3.2 CAD design on porous structure 36
3.3 Porous Ti-6Al-4V alloys fabricated by SLM of AM 37
3.4 Porous Ti-6Al-4V alloys fabricated by EBM of AM 38
3.5 Property measurements and analyses 39
3.5.1 X-ray diffraction 39
3.5.2 Porosity measurement 39
3.5.3 Scanning electron microscopy 40
3.5.4 Microhardness testing 40
3.5.5 Compression testing 41
3.5.6 Micro computed tomography 41
Chapter 4 Results and Discussion 43
4.1 As-received Ti-6Al-4V powders 43
4.1.1 X-ray diffraction analysis 43
4.1.2 SEM/EDS analysis 43
4.2 Porous foams fabricated by SLM 44
4.2.1 Porosity analysis 45
4.2.2 X-ray diffraction 46
4.2.3 SEM/EDS analysis 47
4.2.4 Comparison between CAD models and porous foams 48
4.2.5 Compression testing and micro-CT analysis 50
4.2.6 Microhardness analysis 55
4.3 Porous foams fabricated by EBM 56
4.3.1 Porosity analysis 56
4.3.2 X-ray diffraction analysis 57
4.3.3 SEM/EDS analysis 58
4.3.4 Compression testing and micro-CT analysis 59
4.3.5 Microhardness analysis 64
4.4 Comparison between SLM porous foams and EBM porous foams 65
Chapter 5 Summary and Conclusions 69
Chapter 6 Suggestions for Future Research 72
References 73
Tables 88
Figures 111
參考文獻 References
[1] I. Gibson, D. W. Rosen, B. Stucker, Additive manufacturing technologies, Springer, 2010.
[2] F. Schüth, Endo‐ and exotemplating to create high‐surface‐area inorganic materials, Angewandte Chemie International Edition, 42 (2003) 3604-3622.
[3] Z. Dai, H. Ju, Bioanalysis based on nanoporous materials, TrAC Trends in Analytical Chemistry, 39 (2012) 149-162.
[4] R. Goodall, A. Mortensen, Porous Metals, in: fifth ed., in: D. Laughlin, K. Hono (Eds.), Physical Metallurgy, Vol. 7, Elsevier, 2014, pp. 2399-2595.
[5] D. A. Hollander, M. V. Walter, T. Wirtz, R. Sellei, B. Schmidt-Rohlfing, O. Paar, H. J. Erli, Structural, mechanical and in vitro characterization of individually structured Ti–6Al–4V produced by direct laser forming, Biomaterials, 27 (2006) 955-963.
[6] M. Burns, Automated fabrication: improving productivity in manufacturing, Prentice-Hall, 1993.
[7] J. P. Kruth, M. C. Leu, T. Nakagawa, Progress in Additive Manufacturing and Rapid Prototyping, CIRP Annals, 47 (1998) 525-540.
[8] C. K. Chua, K. F. Leong, C. S. Lim, Rapid prototyping: principles and applications, Singapore: World Scientific, 2003.
[9] D. T. Pham, R. S. Gault, A comparison of rapid prototyping technologies, International Journal of Machine Tools and Manufacture, 38 (1998) 1257-1287.
[10] K. Renap, J. P. Kruth, Recoating issues in stereolithography, Rapid Prototyping Journal, 1 (1995) 4-16.
[11] S. Au, P. K. Wright, Comparative study of rapid prototyping technology, ASME DES ENG DIV PUBL DE, ASME, NEW YORK, NY,(USA), 66 (1993) 73-82.
[12] J. P. Kruth, P. Mercelis, J. V. Vaerenbergh, L. Froyen, M. Rombouts, Binding mechanisms in selective laser sintering and selective laser melting, Rapid prototyping Journal, 11 (2005) 26-36.
[13] W. S. W. Harun, M. S. I. N. Kamariah, N. Muhamad, S. A. C. Ghani, F. Ahmad, Z. Mohamed, A review of powder additive manufacturing processes for metallic biomaterials, Powder Technology, 327 (2018) 128-151.
[14] J. P. Kruth, B. V. D. Schueren, J. E. Bonse, B. Morren, Basic Powder Metallurgical Aspects in Selective Metal Powder Sintering, CIRP Annals, 45 (1996) 183-186.
[15] B. V. D. Schueren, Basic contributions to the development of the selective metal powder sintering process, K. U. Leuven, 1996.
[16] L. Thijs, F. Verhaeghe, T. Craeghs, J. V. Humbeeck, J. P. Kruth, A study of the microstructural evolution during selective laser melting of Ti–6Al–4V, Acta Materialia, 58 (2010) 3303-3312.
[17] H. Attar, M. Calin, L. C. Zhang, S. Scudino, J. Eckert, Manufacture by selective laser melting and mechanical behavior of commercially pure titanium, Materials Science and Engineering: A, 593 (2014) 170-177.
[18] J. P. Kruth, L. Froyen, J. V. Vaerenbergh, P. Mercelis, M. Rombouts, B. Lauwers, Selective laser melting of iron-based powder, Journal of Materials Processing Technology, 149 (2004) 616-622.
[19] B. Vandenbroucke, J. P. Kruth, Selective laser melting of biocompatible metals for rapid manufacturing of medical parts, Rapid Prototyping Journal, 13 (2007) 196-203.
[20] X. Zhao, S. Li, M. Zhang, Y. Liu, T. B. Sercombe, S. Wang, Y. Hao, R. Yang, L. E. Murr, Comparison of the microstructures and mechanical properties of Ti–6Al–4V fabricated by selective laser melting and electron beam melting, Materials & Design, 95 (2016) 21-31.
[21] J. C. Williams, A. W. Sommer, P. P. Tung, The influence of oxygen concentration on the internal stress and dislocation arrangements in α titanium, Metallurgical Transactions, 3 (1972) 2979-2984.
[22] Y. J. Liu, S. J. Li, H. L. Wang, W. T. Hou, Y. L. Hao, R. Yang, T. B. Sercombe, L. C. Zhang, Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting, Acta Materialia, 113 (2016) 56-67.
[23] H. K. Rafi, N. V. Karthik, H. Gong, T. L. Starr, B. E. Stucker, Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting, Journal of materials engineering and performance, 22 (2013) 3872-3883.
[24] N. Hrabe, T. Quinn, Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti–6Al–4V) fabricated using electron beam melting (EBM), part 1: Distance from build plate and part size, Materials Science and Engineering: A, 573 (2013) 264-270.
[25] R. Li, J. Liu, Y. Shi, L. Wang, W. Jiang, Balling behavior of stainless steel and nickel powder during selective laser melting process, The International Journal of Advanced Manufacturing Technology, 59 (2012) 1025-1035.
[26] Y. Liu, S. Li, W. Hou, S. Wang, Y. Hao, R. Yang, T. B. Sercombe, L. C. Zhang, Electron Beam Melted Beta-type Ti–24Nb–4Zr–8Sn Porous Structures With High Strength-to-Modulus Ratio, Journal of Materials Science & Technology, 32 (2016) 505-508.
[27] S. Das, Physical aspects of process control in selective laser sintering of metals, Advanced Engineering Materials, 5 (2003) 701-711.
[28] R. Li, Y. Shi, Z. Wang, L. Wang, J. Liu, W. Jiang, Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting, Applied Surface Science, 256 (2010) 4350-4356.
[29] S. A. Miller, R. J. Murphy, A gas-water atomization process for producing amorphous powders, Scripta Metallurgica, 13 (1979) 673-676.
[30] I. E. Anderson, R. S. Figliola, H. Morton, Flow mechanisms in high pressure gas atomization, Materials Science and Engineering: A, 148 (1991) 101-114.
[31] G. Rai, E. Lavernia, N. J. Grant, Powder size and distribution in ultrasonic gas atomization, JOM, 37 (1985) 22-26.
[32] T. Hanawa, Recent development of new alloys for biomedical use, Materials Science Forum, 512 (2006) 243-248.
[33] S. C. Cowin, L. Cardoso, Blood and interstitial flow in the hierarchical pore space architecture of bone tissue, Journal of Biomechanics, 48 (2015) 842-854.
[34] M. Geetha, A. K. Singh, R. Asokamani, A. K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants – A review, Progress in Materials Science, 54 (2009) 397-425.
[35] F. G. Evans, Mechanical properties and histology of cortical bone from younger and older men, The Anatomical Record, 185 (1976) 1-11.
[36] M. Ding, M. Dalstra, C.C. Danielsen, J. Kabel, I. Hvid, F. Linde, Age variations in the properties of human tibial trabecular bone, Journal of Bone & Joint Surgery, 79 (1997) 995-1002.
[37] R. Huiskes, Stress shielding and bone resorption in THA: clinical versus computer-simulation studies, Acta Orthopaedica Belgica, 59 (1993) 118-129.
[38] D. M. Robertson, L. St. Pierre, R. Chahal, Preliminary observations of bone ingrowth into porous materials, Journal of Biomedical Materials Research, 10 (1976) 335-344.
[39] H. U. Cameron, I. Macnab, R. M. Pilliar, A porous metal system for joint replacement surgery, The International Journal of Artificial Organs, 1 (1978) 104-109.
[40] W. C. Head, D. J. Bauk, R. H. Emerson, Titanium as the material of choice for cementless femoral components in total hip arthroplasty, Clinical Orthopaedics and Related Research, 311 (1995) 85-90.
[41] Y. Li, C. Yang, H. Zhao, S. Qu, X. Li, Y. Li, New Developments of Ti-Based Alloys for Biomedical Applications, Materials, 7 (2014) 1709-1800.
[42] H. F. Hildebrand, C. Veron, P. Martin, Nickel, chromium, cobalt dental alloys and allergic reactions: an overview, Biomaterials, 10 (1989) 545-548.
[43] N. J. Hallab, S. Anderson, T. Stafford, T. Glant, J. J. Jacobs, Lymphocyte responses in patients with total hip arthroplasty, Journal of Orthopaedic Research, 23 (2005) 384-391.
[44] M. A. Moore, The relationship between the abrasive wear resistance, hardness and microstructure of ferritic materials, Wear, 28 (1974) 59-68.
[45] M. Kehoe, P. M. Kelly, The role of carbon in the strength of ferrous martensite, Scripta Metallurgica, 4 (1970) 473-476.
[46] A. A. Griffith, The phenomena of flow and rupture in solids, Philosophical Transactions of the Royal Society of London A, 221 (1920) 163-198.
[47] G. R. Irwin, Fracture dynamics, in: Fracturing of Metals, American Society of Metals, Cleveland, OH, (1948) 147-166.
[48] G.R. Irwin, Analysis of stresses and strains near the end of a crack traversing a plate, Journal of Applied Mechanics, 24 (1957) 361-364.
[49] X. K. Zhu, J. A. Joyce, Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization, Engineering Fracture Mechanics, 85 (2012) 1-46.
[50] T. L. Norman, D. Vashishth, D. B. Burr, Fracture toughness of human bone under tension, Journal of Biomechanics, 28 (1995) 309-320.
[51] Y. N. Yeni, C. U. Brown, Z. Wang, T. L. Norman, The influence of bone morphology on fracture toughness of the human femur and tibia, Bone, 21 (1997) 453-459.
[52] J. D. Currey, Mechanical properties of bone tissues with greatly differing functions, Journal of Biomechanics, 12 (1979) 313-319.
[53] M. Niinomi, Mechanical properties of biomedical titanium alloys, Materials Science and Engineering: A, 243 (1998) 231-236.
[54] B. Cotterell, J. K. Reddel, The essential work of plane stress ductile fracture, International Journal of Fracture, 13 (1977) 267-277.
[55] A. B. Martinez, J. G. Perez, M. S. Soto, J. I. Velasco, O. O. Santana, M. L. Maspoch, The Essential Work of Fracture (EWF) method – Analyzing the Post-Yielding Fracture Mechanics of polymers, Engineering Failure Analysis, 16 (2009) 2604-2617.
[56] K. L. Fung, H. X. Zhao, J. T. Wang, Y. Z. Meng, S. C. Tjong, R. K. Y. Li, Essential work of fracture (EWF) analysis for compression molded alternating poly (propylene carbonate), Polymer Engineering & Science, 44 (2004) 580-587.
[57] E. K. Molchanova, Phase diagrams of titanium alloys, Israel Program for Scientific Translations, 1965.
[58] M. Bönisch, M. Calin, T. Waitz, A. Panigrahi, M. Zehetbauer, A. Gebert, W. Skrotzki, J. Eckert, Thermal stability and phase transformations of martensitic Ti–Nb alloys, Science and Technology of Advanced Materials, 14 (2016) 55004/1-55004/9.
[59] M. K. McQuillan, Phase transformations in titanium and its alloys, Metallurgical Reviews, 8 (1963) 41-104.
[60] N. Sakaguchi, M. Niinomi, T. Akahori, J. Takeda, H. Toda, Effect of Ta content on mechanical properties of Ti–30Nb–XTa–5Zr, Materials Science and Engineering: C, 25 (2005) 370-376.
[61] M. T. Jovanović, S. Tadić, S. Zec, Z. Mišković, I. Bobić, The effect of annealing temperatures and cooling rates on microstructure and mechanical properties of investment cast Ti–6Al–4V alloy, Materials & Design, 27 (2006) 192-199.
[62] R. A. Lueck, J. Galante, W. Rostoker, R. D. Ray, Development of an open pore metallic implant to permit attachment to bone, Surgical Forum, 20 (1969) 456-457.
[63] K. Manukyan, N. Amirkhanyan, S. Aydinyan, V. Danghyan, R. Grigoryan, N. Sarkisyan, G. Gasparyan, R. Aroutiounian, S. Kharatyan, Novel NiZr-based porous biomaterials: Synthesis and in vitro testing, Chemical Engineering Journal, 162 (2010) 406-414.
[64] X. Wang, Y. Li, J. Xiong, P. D. Hodgson, C. Wen, Porous TiNbZr alloy scaffolds for biomedical applications, Acta Biomaterialia, 5 (2009) 3616-3624.
[65] X. Zhao, H. Sun, L. Lan, J. Huang, H. Zhang, Y. Wang, Pore structures of high-porosity NiTi alloys made from elemental powders with NaCl temporary space-holders, Materials Letters, 63 (2009) 2402-2404.
[66] J. Schroers, G. Kumar, T. M. Hodges, S. Chan, T. R. Kyriakides, Bulk metallic glasses for biomedical applications, JOM, 61 (2009) 21-29.
[67] C. E. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino, T. Asahina, Processing of biocompatible porous Ti and Mg, Scripta Materialia, 45 (2001) 1147-1153.
[68] C. E. Wen, Y. Yamada, P. D. Hodgson, Fabrication of novel TiZr alloy foams for biomedical applications, Materials Science and Engineering: C, 26 (2006) 1439-1444.
[69] A. J. T. Clemow, A. M. Weinstein, J. J. Klawitter, J. Koeneman, J. Anderson, Interface mechanics of porous titanium implants, Journal of Biomedical Materials Research, 15 (1981) 73-82.
[70] W. Pompe, H. Worch, M. Epple, W. Friess, M. Gelinsky, P. Greil, U. Hempel, D. Scharnweber, K. Schulte, Functionally graded materials for biomedical applications, Materials Science and Engineering: A, 362 (2003) 40-60.
[71] R. Menini, M. J. Dion, S. K. So, M. Gauthier, L. P. Lefebvre, Surface and corrosion electrochemical characterization of titanium foams for implant applications, Journal of The Electrochemical Society, 153 (2006) B13-B21.
[72] F. Simancik, Introduction: the strange world of cellular metals, Handbook of Cellular Metals: Production, Processing, Applications, (2003) 1-4.
[73] J. J. Klawitter, A. M. Weinstein, The status of porous materials to obtain direct skeletal attachment by tissue ingrowth, Acta Orthopaedica Belgica, 40 (1974) 755-765.
[74] C. A. Homsy, T. E. Cain, F. B. Kessler, M. S. Anderson, J. W. King, Porous implant systems for prosthesis stabilization, Clinical Orthopaedics and Related Research, 89 (1972) 220-235.
[75] B. W. Sauer, A. M. Weinstein, J. J. Klawitter, S. F. Hulbert, R. B. Leonard, J. G. Bagwell, The role of porous polymeric materials in prosthesis attachment, Journal of Biomedical Materials Research, 8 (1974) 145-153.
[76] H. Hahn, W. Palich, Preliminary evaluation of porous metal surfaced titanium for orthopedic implants, Journal of Biomedical Materials Research, 4 (1970) 571-577.
[77] J. S. Hirschhorn, A. A. McBeath, M. R. Dustoor, Porous titanium surgical implant materials, Journal of Biomedical Materials Research, 5 (1971) 49-67.
[78] M. T. Karagianes, Porous metals as a hard tissue substitute, Biomaterials, Medical Devices, and Artificial Organs, 1 (1973) 171-181.
[79] H. Yoshikawa, A. Myoui, Bone tissue engineering with porous hydroxyapatite ceramics, Journal of Artificial Organs, 8 (2005) 131-136.
[80] K. Rezwan, Q. Z. Chen, J. J. Blaker, A. R. Boccaccini, Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering, Biomaterials, 27 (2006) 3413-3431.
[81] R. T. Bothe, L. E. Beaton, H. A. Davenport, Reaction of bone to multiple metallic implants, Surgery, Gynecology & Obstetrics, 71 (1940) 598-602.
[82] G. S. Leventhal, Titanium, a metal for surgery, The Journal of Bone & Joint Surgery, 33 (1951) 473-474.
[83] B. P. Bannon, E. E. Mild, Titanium alloys for biomaterial application: an overview, ASTM-STP, 796 (1983) 7-15.
[84] C. E. Wen, Y. Yamada, K. Shimojima, Y. Chino, H. Hosokawa, M. Mabuchi, Novel titanium foam for bone tissue engineering, Journal of Materials Research, 17 (2002) 2633-2639.
[85] M. A. L. Heredia, J. Sohier, C. Gaillard, S. Quillard, M. Dorget, P. Layrolle, Rapid prototyped porous titanium coated with calcium phosphate as a scaffold for bone tissue engineering, Biomaterials, 29 (2008) 2608-2615.
[86] Y. Yamada, K. Shimojima, Y. Sakaguchi, M. Mabuchi, M. Nakamura, T. Asahina, T. Mukai, H. Kanahashi, K. Higashi, Processing of cellular magnesium materials, Advanced Engineering Materials, 2 (2000) 184-187.
[87] I. H. Oh, N. Nomura, N. Masahashi, S. Hanada, Mechanical properties of porous titanium compacts prepared by powder sintering, Scripta Materialia, 49 (2003) 1197-1202.
[88] J. P. Li, S. H. Li, C. A. V. Blitterswijk, K. D. Groot, A novel porous Ti6Al4V: characterization and cell attachment, Journal of Biomedical Materials Research Part A, 73 (2005) 223-233.
[89] J. P. Li, J. R. D. Wijn, C. A. V. Blitterswijk, K. D. Groot, Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: Preparation and in vitro experiment, Biomaterials, 27 (2006) 1223-1235.
[90] A. Laptev, O. Vyal, M. Bram, H. P. Buchkremer, D. Stöver, Green strength of powder compacts provided for production of highly porous titanium parts, Powder Metallurgy, 48 (2005) 358-364.
[91] Z. Esen, S. Bor, Processing of titanium foams using magnesium spacer particles, Scripta Materialia, 56 (2007) 341-344.
[92] A. Bansiddhi, D. C. Dunand, Shape-memory NiTi foams produced by replication of NaCl space-holders, Acta Biomaterialia, 4 (2008) 1996-2007.
[93] A. Mansourighasri, N. Muhamad, A. B. Sulong, Processing titanium foams using tapioca starch as a space holder, Journal of Materials Processing Technology, 212 (2012) 83-89.
[94] C. S. Y. Jee, Z. X. Guo, J. R. G. Evans, N. Özgüven, Preparation of high porosity metal foams, Metallurgical and Materials Transactions B, 31 (2000) 1345-1352.
[95] T. Aydoğmuş, S. Bor, Processing of porous TiNi alloys using magnesium as space holder, Journal of Alloys and Compounds, 478 (2009) 705-710.
[96] K. Asaoka, N. Kuwayama, O. Okuno, I. Miura, Mechanical properties and biomechanical compatibility of porous titanium for dental implants, Journal of Biomedical Materials Research, 19 (1985) 699-713.
[97] R. Miyao, M. Omori, F. Watari, A. Yokoyama, H. Matsuno, T. Hirai, T. Kawasaki, Fabrication of functionally graded implants by spark plasma sintering and their properties, Journal of the Japan Society of Powder and Powder Metallurgy, 47 (2000) 1239-1242.
[98] F. Watari, H. Kondo, R. Miyao, M. Omori, A. Okubo, T. Hirai, A. Yokoyama, M. Uo, Y. Tamura, T. Kawasaki, Effect of spark plasma sintering pressure on the properties of functionally graded implant and its biocompatibility, Journal of the Japan Society of Powder and Powder Metallurgy, 49 (2002) 1063-1069.
[99] M. Kon, L. M. Hirakata, K. Asaoka, Porous Ti‐6Al‐4V alloy fabricated by spark plasma sintering for biomimetic surface modification, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 68B (2004) 88-93.
[100] Y. Sakamoto, K. Asaoka, M. Kon, T. Matsubara, K. Yoshida, Chemical surface modification of high-strength porous Ti compacts by spark plasma sintering, Bio-Medical Materials and Engineering, 16 (2006) 83-91.
[101] R. Nicula, F. Lüthen, M. Stir, B. Nebe, E. Burkel, Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications, Biomolecular Engineering, 24 (2007) 564-567.
[102] A. Ibrahim, F. Zhang, E. Otterstein, E. Burkel, Processing of porous Ti and Ti5Mn foams by spark plasma sintering, Materials & Design, 32 (2011) 146-153.
[103] F. Zhang, E. Otterstein, E. Burkel, Spark plasma sintering, microstructures, and mechanical properties of macroporous titanium foams, Advanced Engineering Materials, 12 (2010) 863-872.
[104] R. Singh, P. D. Lee, T. C. Lindley, C. Kohlhauser, C. Hellmich, M. Bram, T. Imwinkelried, R. J. Dashwood, Characterization of the deformation behavior of intermediate porosity interconnected Ti foams using micro-computed tomography and direct finite element modeling, Acta Biomaterialia, 6 (2010) 2342-2351.
[105] K. Kato, S. Ochiai, A. Yamamoto, Y. Daigo, K. Honma, S. Matano, K. Omori, Novel multilayer Ti foam with cortical bone strength and cytocompatibility, Acta Biomaterialia, 9 (2013) 5802-5809.
[106] D. W. Hutmacher, M. Sittinger, M. V. Risbud, Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems, Trends in Biotechnology, 22 (2004) 354-362.
[107] W. Y. Yeong, C. K. Chua, K. F. Leong, M. Chandrasekaran, Rapid prototyping in tissue engineering: challenges and potential, Trends in Biotechnology, 22 (2004) 643-652.
[108] E. Sachlos, N. Reis, C. Ainsley, B. Derby, J. T. Czernuszka, Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication, Biomaterials, 24 (2003) 1487-1497.
[109] W. Sun, A. Darling, B. Starly, J. Nam, Computer‐aided tissue engineering: overview, scope and challenges, Biotechnology and Applied Biochemistry, 39 (2004) 29-47.
[110] E. Sachlos, J. T. Czernuszka, Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds, European Cells and Materials, 5 (2003) 39-40.
[111] A. Curodeau, E. Sachs, S. Caldarise, Design and fabrication of cast orthopedic implants with freeform surface textures from 3‐D printed ceramic shell, Journal of Biomedical Materials Research, 53 (2000) 525-535.
[112] J. Mazumder, H. Qi, Fabrication of 3D components by laser-aided direct metal deposition, Critical Review: Industrial Lasers and Applications, 5706 (2005) 38-59.
[113] S. Kumar, Selective laser sintering: a qualitative and objective approach, JOM, 55 (2003) 43-47.
[114] F. X. Xie, X. B. He, S. L. Cao, X. Lu, X. H. Qu, Structural characterization and electrochemical behavior of a laser-sintered porous Ti–10Mo alloy, Corrosion Science, 67 (2013) 217-224.
[115] V. Karageorgiou, D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials, 26 (2005) 5474-5491.
[116] C. M. Ford, L. J. Gibson, Uniaxial strength asymmetry in cellular materials: An analytical model, International Journal of Mechanical Sciences, 40 (1998) 521-531.
[117] A. F. Bastawros, H. B. Smith, A. G. Evans, Experimental analysis of deformation mechanisms in a closed-cell aluminum alloy foam, Journal of the Mechanics and Physics of Solids, 48 (2000) 301-322.
[118] A. P. Roberts, E. J. Garboczi, Elastic properties of model random three-dimensional open-cell solids, Journal of the Mechanics and Physics of Solids, 50 (2002) 33-55.
[119] L. J. Gibson, M. F. Ashby, The Mechanics of Three-Dimensional Cellular Materials, Proceedings of the Royal Society A, 382 (1982) 43-59.
[120] S. M. Ahmadi, G. Campoli, S. A. Yavari, B. Sajadi, R. Wauthle, J. Schrooten, H. Weinans, A. A. Zadpoor, Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells, Journal of the Mechanical Behavior of Biomedical Materials, 34 (2014) 106-115.
[121] S. J. Li, Q. S. Xu, Z. Wang, W. T. Hou, Y. L. Hao, R. Yang, L. E. Murr, Influence of cell shape on mechanical properties of Ti–6Al–4V meshes fabricated by electron beam melting method, Acta Biomaterialia, 10 (2014) 4537-4547.
[122] S. M. Ahmadi, S. A. Yavari, R. Wauthle, B. Pouran, J. Schrooten, H. Weinans, A. Zadpoor, Additively Manufactured Open-Cell Porous Biomaterials Made from Six Different Space-Filling Unit Cells: The Mechanical and Morphological Properties, Materials, 8 (2015) 1871-1896.
[123] S. A. Yavari, S. M. Ahmadi, R. Wauthle, B. Pouran, J. Schrooten, H. Weinans, A. A. Zadpoor, Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials, Journal of the Mechanical Behavior of Biomedical Materials, 43 (2015) 91-100.
[124] J. Kadkhodapour, H. Montazerian, A. C. Darabi, A. P. Anaraki, S. M. Ahmadi, A. A. Zadpoor, S. Schmauder, Failure mechanisms of additively manufactured porous biomaterials: Effects of porosity and type of unit cell, Journal of the Mechanical Behavior of Biomedical Materials, 50 (2015) 180-191.
[125] C. Yan, L. Hao, A. Hussein, P. Young, Ti–6Al–4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting, Journal of the Mechanical Behavior of Biomedical Materials, 51 (2015) 61-73.
[126] V. Weißmann, R. Bader, H. Hansmann, N. Laufer, Influence of the structural orientation on the mechanical properties of selective laser melted Ti6Al4V open-porous scaffolds, Materials & Design, 95 (2016) 188-197.
[127] S. L. R. D. Silva, L. O. Kerber, L. Amaral, C. A. D. Santos, X-ray diffraction measurements of plasma-nitrided Ti–6Al–4V, Surface and coatings Technology, 116 (1999) 342-346.
[128] H. Gong, K. Rafi, H. Gu, G. D. Janaki Ram, T. Starr, B. Stucker, Influence of defects on mechanical properties of Ti–6Al–4 V components produced by selective laser melting and electron beam melting, Materials & Design, 86 (2015) 545-554.
[129] Y. Zhou, S. F. Wen, B. Song, X. Zhou, Q. Teng, Q. S. Wei, Y. S. Shi, A novel titanium alloy manufactured by selective laser melting: Microstructure, high temperature oxidation resistance, Materials & Design, 89 (2016) 1199-1204.
[130] I. Yadroitsev, P. Krakhmalev, I. Yadroitsava, Selective laser melting of Ti6Al4V alloy for biomedical applications: Temperature monitoring and microstructural evolution, Journal of Alloys and Compounds, 583 (2014) 404-409.
[131] E. Tsuruga, H. Takita, H. Itoh, Y. Wakisaka, Y. Kuboki, Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis, Journal of Biochemistry, 121 (1997) 317-324.
[132] C. M. Murphy, M. G. Haugh, F. J. O'Brien, The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering, Biomaterials, 31 (2010) 461-466.
[133] S. Ahmadi, S. K. Sadrnezhaad, A novel method for production of foamy core@compact shell Ti6Al4V bone-like composite, Journal of Alloys and Compounds, 656 (2016) 416-422.
[134] L. Facchini, E. Magalini, P. Robotti, A. Molinari, S. Höges, K. Wissenbach, Ductility of a Ti-6Al-4V alloy produced by selective laser melting of prealloyed powders, Rapid Prototyping Journal, 16 (2010) 450-459.
[135] J. B. Li, H. C. Lin, J. S. C. Jang, C. N. Kuo, J. C. Huang, Novel open-cell bulk metallic glass foams with promising characteristics, Materials Letters, 105 (2013) 140-143.
[136] T. Y. Wu, X. Wang, J. C. Huang, W. Y. Tsai, Y. Y. Chu, S. Y. Chen, X. H. Du, Characterization and Functional Applications of Nanoporous Ag Foams Prepared by Chemical Dealloying, Metallurgical and Materials Transactions B, 46 (2015) 2296-2304.
[137] M. F. Ashby, T. Evans, N. A. Fleck, J. Hutchinson, H. Wadley, L. Gibson, Metal foams: a design guide, Elsevier, 2000.
[138] D. K. Pattanayak, A. Fukuda, T. Matsushita, M. Takemoto, S. Fujibayashi, K. Sasaki, N. Nishida, T. Nakamura, T. Kokubo, Bioactive Ti metal analogous to human cancellous bone: Fabrication by selective laser melting and chemical treatments, Acta Biomaterialia, 7 (2011) 1398-1406.
[139] D. D. Deligianni, N. Katsala, S. Ladas, D. Sotiropoulou, J. Amedee, Y. F. Missirlis, Effect of surface roughness of the titanium alloy Ti–6Al–4V on human bone marrow cell response and on protein adsorption, Biomaterials, 22 (2001) 1241-1251.
[140] T. Ahmed, H. J. Rack, Phase transformations during cooling in α+β titanium alloys, Materials Science and Engineering: A, 243 (1998) 206-211.
[141] K. Choi, J. L. Kuhn, M. J. Ciarelli, S. A. Goldstein, The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus, Journal of Biomechanics, 23 (1990) 1103-1113.
[142] P. K. Zysset, X. E. Guo, C. E. Hoffler, K. E. Moore, S. A. Goldstein, Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur, Journal of Biomechanics, 32 (1999) 1005-1012.
[143] G. Kerckhofs, G. Pyka, M. Moesen, S. V. Bael, J. Schrooten, M. Wevers, High‐resolution microfocus X‐ray computed tomography for 3D surface roughness measurements of additive manufactured porous materials, Advanced Engineering Materials, 15 (2013) 153-158.
[144] M. F. Ashby, D. R. H. Jones, Engineering Materials 1: An Introduction to Properties, Applications and Design, Elsevier, 2012.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code