Responsive image
博碩士論文 etd-0521120-123540 詳細資訊
Title page for etd-0521120-123540
論文名稱
Title
應用於終端裝置之低姿勢背部接地面連體開槽孔MIMO天線設計
Low-Profile Ground-Backed Conjoined Open-Slot MIMO Antennas for Future Terminal Devices
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
112
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2020-06-20
繳交日期
Date of Submission
2020-06-21
關鍵字
Keywords
短路平板天線、背部接地面天線、5G天線、MIMO天線、低姿勢天線、WLAN天線、開槽孔天線、連體開槽孔天線、行動天線
open-slot antennas, Mobile antennas, WLAN antennas, ground-backed antennas, MIMO antennas, 5G antennas, conjoined-slot antennas, low-profile antennas
統計
Statistics
本論文已被瀏覽 5626 次,被下載 0
The thesis/dissertation has been browsed 5626 times, has been downloaded 0 times.
中文摘要
本論文提出應用於終端裝置之低姿勢背部接地面連體開槽孔天線設計,低姿勢天線的定義為天線高度在1 mm (約為3300 MHz的0.011λ)以內,因此能整合於終端裝置之介質機殼,不會額外增加介質機殼的厚度。第一個設計為涵蓋3300 ~ 4200 MHz之5G低姿勢接地共面波導饋入連體開槽孔MIMO四天線設計,為了簡化四天線結構,結合開槽孔天線加寬之閉口端,使四個開槽孔天線為連體結構。第二個設計為整合低姿勢帶線饋入連體開槽孔及短路平板天線形成寬頻WLAN MIMO四天線設計,四天線設計於完整接地面,利用帶線耦合激發開槽孔天線模態及槽孔兩側之一的短路平板天線模態,整合開槽孔與短路平板天線涵蓋5150 ~ 5875 MHz,再將第二個設計為基礎延伸開發六天線與八天線設計,詳細的天線設計原理將在本論文中作說明。
Abstract
In this dissertation, the low-profile ground-backed conjoined open-slot antennas for future terminal devices are presented. The antennas are very low profile with only 1 mm in height (about 0.011λ at 3300 MHz) or less, thus it can be integrated within the casing of the devices without occupying inner volume therein. Four open-slot antennas are end-widened and conjoined to achieve wide bandwidth yet compact size. The first design is fed using the grounded coplanar waveguide (GCPW) to achieve a wideband operation for 4 × 4 fifth-generation (5G) multi-input multi-output (MIMO) operation in the smartphone in 3300 ~ 4200 MHz. The second design is fed using the stripline and can generate additional shorted-patch antenna mode to cover wide bandwidth. The stripline-fed ground-backed conjoined open-slot antennas can cover 5150 ~ 5875 MHz for 4 × 4 wireless local area network (WLAN) MIMO operation. For practical applications, the second design can be directly attached to the ground plane of display panel of the mobile device, such as the laptop computer. In order to have more antennas for larger MIMO configuration, the design of stripline-fed ground-backed conjoined open-slot antennas for 4 × 4 MIMO operation are extended for 6 × 6 and 8 × 8 MIMO operations. Higher channel capacities can therefore be obtained. Details of the proposed designs are presented.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
Acknowledgements iv
內頁 vi
中文摘要 vii
English Abstract viii
Table of Contents ix
List of Figures xi
List of Tables xviii
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Literature Review 3
1.3 Dissertation Organization 13
Chapter 2 Grounded Coplanar Waveguide-Fed Wideband Conjoined Open-Slot Antennas for 4 × 4 5G MIMO Operation in 3300 ~ 4200 MHz 17
2.1 Antenna Structures and Operating Principles 17
2.2 Experimental Results 27
2.3 Integration Study within the Dielectric Back Cover 31
2.4 User’s Hand Effects 36
2.5 4 × 4 MIMO Measurement Study 39
2.6 Extended Study 45

Chapter 3 Stripline-Fed Conjoined Open-Slot Antennas for On-Metal Application with 4 × 4 WLAN MIMO Operation in 5150 ~ 5875 MHz 49
3.1 Antenna Structures and Operating Principles 50
3.2 MIMO Performance Analysis 60
3.3 Extended Study 62
Chapter 4 Stripline-Fed Conjoined Open-Slot Antennas for On-Metal Application with 6 × 6 and 8 × 8 WLAN MIMO Operation in 5150 ~ 5875 MHz 68
4.1 Six-Antenna Structure for 6 × 6 WLAN MIMO Operation in 5150 ~ 5875 MHz 68
4.2 Eight-Antenna Structure for 8 × 8 WLAN MIMO Operation in 5150 ~ 5875 MHz 74
4.3 Experimental Results 79
4.4 MIMO Performance Analysis 82
Chapter 5 Conclusions 86
References 89
Publication List 94
參考文獻 References
[1] White paper of GSA (the global mobile suppliers association), “The future of IMT in the 3300~4200 MHz frequency range,” [Online]. Available: https://gsacom.com/paper/ future-imt-3300-4200-mhz-frequency-range, Jun. 15, 2019.
[2] News release, “VIAVI reports on the state of 5G deployments worldwide,” [Online]. Available: https://www.viavisolutions.com/enus/news-releases/viavi-reports-state-5g- deployments -worldwide, Feb.18, 2019.
[3] White paper, “Wireless 2020: spectrum strategies for 5G: 2019 update,” [Online]. Available: http://www.wireless2020.com/media/whitepapers/Spectrum-Strategies-for- 5G-2019-Update.pdf, Jan. 20, 2019.
[4] M. Jansen, “Every 5G phone announced so far so you can get a faster internet connection,” [Online]. Available: https://www.digitaltrends.com/mobile/5g-capable- phones, Apr. 20, 2020.
[5] Cisco, “5 things to know about Wi-Fi 6 and 5G“ [Online]. Available: https://www.cisco.com/c/m/en_us/solutions/enterprise-networks/802-11ax-solution/nb-06-5-things-WiFi6-5G-infograph-cte-en.html, Apr. 20, 2020.
[6] News, “Wi-Fi alliance® introduces Wi-Fi 6,” [Online]. Available: https://www.wi-fi. org/news-events/newsroom/wi-fi-alliance-introduces-wi-fi-6, Apr. 20, 2020.
[7] News, “Wi-Fi alliance® brings Wi-Fi 6 into 6 GHz,” [Online]. Available: https://www.wi-fi.org/news-events/newsroom/wi-fi-alliance-brings-wi-fi-6-into-6-ghz, Apr. 20, 2020.
[8] ITU News Magazine, “Key outcomes of the world radiocommunication conference 2019,” [Online]. Available: https://www.itu.int/en/itunews/Documents/2019/ 2019-06/2019_ITUNews06-en.pdf, Apr. 20, 2020.
[9] J. Park and W. Hong, “Antenna-on-display (AOD) for millimeter-wave 5G mobile devices,” 2019 IEEE Int.l Symp. Antennas and Propagat. (APSURSI), Atlanta, USA, 2019, pp. 603-604.
[10] D. Q. Liu, H. J. Luo, M. Zhang, H. L. Wen, B. Wang, and J. Wang, “An extremely low-profile wideband MIMO antenna for 5G smart-phones,” IEEE Trans. Antennas Propag., vol. 67, pp. 5772-5780, Sep. 2019.
[11] D. Q. Liu, M. Zhang, B. Wang, and J. Wang, “An ultra-low-profile MIMO antenna for 5G smart-phones,” 2018 Int. Symp. on Antennas and Propag. (ISAP), Busan, South Korea, 2018, pp. 1-2.
[12] X. Zhang, Y. Li, W. Wang and W. Shen, “Ultra-wideband 8-port MIMO antenna array for 5G metal-frame smartphones,” IEEE Access, vol. 7, pp. 72273-72282, May 2019.
[13] W. Jiang, B. Liu, Y. Cui, and W. Hu, “High-isolation eight-element MIMO array for 5G smartphone applications,” IEEE Access, vol. 7, pp. 34104-34112, Mar. 2019.
[14] K. L. Wong, Y. H Chen, and W. Y. Li, “Decoupled compact ultra-wideband MIMO antennas covering 3.3~6.0 GHz for the fifth-generation mobile and 5GHz-WLAN operations in the future smartphone,” Microw. Opt. Technol. Lett., vol. 60, pp. 2345-2351, Oct. 2018.
[15] Y. Li, C. Sim, Y. Luo, and G. Yang, “Multiband 10-antenna array for sub-6 GHz MIMO applications in 5-G smartphones,” IEEE Access, vol. 6, pp. 28041-28053, May 2018.
[16] Y. Li, C. Sim, Y. Luo, and G. Yang, “12-port 5G massive MIMO antenna array in sub-6GHz mobile handset for LTE bands 42/43/46 applications,” IEEE Access, vol. 6, pp. 344-354, 2018.
[17] K. L. Wong, B. W. Lin, and W. Y. Li, “Dual-band dual inverted-F/loop antennas as a compact decoupled building block for forming eight 3.5/5.8-GHz MIMO antennas in the future smartphone,” Microw. Opt. Technol. Lett., vol. 59, pp. 2715-2721, Nov. 2017.
[18] K. L. Wong, C. Y. Tsai, and W. Y. Li, “Integrated yet decoupled dual antennas with inherent decoupling structures for 2.4/5.2/5.8-GHz WLAN MIMO operation in the smartphone,” Microw. Opt. Technol. Lett., vol. 59, pp. 2235-2241, Sep. 2017.
[19] K. L. Wong, C. Y. Tsai, and J. Y. Lu, “Two asymmetrically mirrored gap-coupled loop antennas as a compact building block for eight-antenna MIMO array in the future smartphone,” IEEE Trans. Antennas Propag., vol. 65, pp. 1765-1778, Apr. 2017.
[20] J. Park, S.Y. Lee, J. Kim, D. Park, W. Choi, and W. Hong, “An optically invisible antenna-on-display concept for millimeter-wave 5G cellular devices,” IEEE Trans. Antennas Propag., vol. 67, pp. 2942-2592, May. 2019.
[21] K. F. Lee and W. Chen, Advances in microstrip and printed antennas. New York, U. S. A.: John Wiley & Sons, 1997.
[22] M. Davidovitz and Y. Lo, “Input impedance of a probe-fed circular microstrip antenna with thick substrate,” IEEE Trans. Antennas Propag., vol. 34, pp. 905-911, Jul. 1986.
[23] S. Best, “A novel element and feed configuration for a dipole very closely spaced to a PEC ground plane,” IEEE Antennas Propagat. Soc. Int. Symp, Monterey, USA, pp. 2907-2910, Jun. 2004.
[24] H. Singh, R. Chandini, and R.M. Jha, Low profile conformal antenna arrays on high impedance substrate. Dordrecht, Netherlands: Springer, 2016.
[25] J. M. Jin, Theory and computation of electromagnetic fields. New Jersey, U. S. A.: John Wiley & Sons, 2015.
[26] ANSYS HFSS, [Online]. Available: http://www.ansys.com/staticassets/ANSYS/ staticassets/resourcelibrary/brochure/ansys-hfss-brochure19.1. pdf, Oct. 1, 2019.
[27] E. Y. Kim, J. H. Yoon, Y. J. Yoon, and C. G. Kim, “Low profile dual-band reflector antenna with dual resonant AMC,” 2011 IEEE Int.l Symp. Antennas and Propagat. (APSURSI), Spokane, USA, pp. 1800-1803, Jul. 2011.
[28] K. L. Wong. Planar antennas for wireless communications. New Jersey, U. S. A.: John Wiley & Sons, 2003.
[29] X. Zhou, H. Zhai, L. Xi, Z. Wei, S. Ma, and L. Zheng. “A low‐profile four‐element MIMO antenna array with new decoupling structures,” Microw. Opt. Technol. Lett., vol. 60, pp. 2511-2516, Oct. 2018
[30] B. Wen, L. Peng, X. Li, K. Mo, X. Jiang, and S. Li, “A low-profile and wideband unidirectional antenna using bandwidth enhanced resonance-based reflector for fifth generation (5G) systems applications,” IEEE Access, vol. 7, pp. 27352-27361, Feb. 2019.
[31] C. Locker, T. Vaupel, and T.F. Eibert, “Radiation efficient unidirectional low-profile slot antenna elements for x-band application,” IEEE Trans. Antennas Propag., vol. 53, pp. 2765-2768, Aug. 2005.
[32] J. M. Kim and J. G. Yook, “A parallel-plate-mode suppressed meander slot antenna with plated-through-holes,” IEEE Antennas and Wireless Propag. Lett., vol. 4, pp. 118-120, Jun. 2005.
[33] A. Bhattacharyya, O. Fordham, and Y. Liu, “Analysis of stripline-fed slot-coupled patch antennas with vias for parallel-plate mode suppression,” IEEE Trans. Antennas Propag., vol. 46, pp. 538-545, Apr. 1998.
[34] I. R. R. Barani, K. L. Wong, Y. X. Zhang, and W. Y. Li, “Low-profile wideband conjoined open-slot antennas fed by grounded coplanar waveguides for 4 × 4 5G MIMO operation,” IEEE Trans. Antennas Propag., vol. 68, pp. 2646-257, Apr. 2020.
[35] Y. L. Ban, C. Li, C. Y. D. Sim, G. Wu, and K. L. Wong, “4G/5G multiple antennas for future multi-mode smartphone applications,” IEEE Access, vol. 4, pp. 2981-2988, Jun. 2016.
[36] I. R. R. Barani and K. L. Wong, “Integrated inverted-F and open-slot antennas in the metal-framed smartphone for 2 x 2 LTE LB and 4 x 4 LTE M/HB MIMO operations,” IEEE Trans. Antennas Propag., vol. 66, pp. 5004-5012, Oct. 2018.
[37] C. Y. Tsai, K. L. Wong, and W. Y. Li, “Experimental results of the multi-Gbps smartphone with 20 multi-input multi-output (MIMO) antennas in the 20 x 12 MIMO operation,” Microw. Opt. Technol. Lett., vol. 60, pp. 2001-2010, Aug. 2018.
[38] C. H. Huang and P. W. Hsu, “Superstrate effects on slot-coupled microstrip antennas,” IEEE Trans. on Magnetics, vol. 27, pp. 3868-3871, Sept. 1991.
[39] Z.-H. Tu, Q.-X. Chu, and Q.-Y. Zhang, “High-gain slot antenna with parasitic patch and windowed metallic superstrate,” Progress in Electromagnetics Research Lett., vol. 15, pp. 27–36, Jan. 2010.
[40] V. Plicanic, “Characterization and enhancement of antenna system performance in compact MIMO terminals,” Ph.D. dissertation, Lund University, Sweden, 2011.
[41] R. Vaughan and J. B. Andersen, Channels, propagation and antennas for mobile communications. London, U.K.: Institution of Electrical Engineers, 2003
[42] R. Vaughan and J. B. Andersen, “Antenna diversity in mobile communications,” IEEE Trans. Veh. Technol., vol. 36, pp.149-172, Nov. 1987.
[43] R&S®SGT100A – Software, [Online]. Available: https://www.rohde-schwarz.com/ tw/software/sgt100a, Apr. 20, 2020.
[44] F. F. Mazda, Telecommunications Engineer's Reference Book. Great Britain: Focal Press, 1998.
[45] C. E. Shannon, “A mathematical theory of communication,” Bell System Technical Journal, vol. 27, pp. 623–656, Jul. 1948.
[46] L. E Frenzel, Handbook of Serial Communications Interfaces: A Comprehensive Compendium of Serial Digital Input/Output (I/O) Standards. Waltham, U.S.A.: Newnes, 2015.
[47] 3GPP Technical Report 37.976. [Online]. Available: https://portal.3gpp.org /desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2636, Apr. 20, 2020.
[48] A. A. Al-Hadi, J. Ilvonen, R. Valkonen, and V. Viikari, “Eight-element antenna array for diversity and MIMO mobile terminal in LTE 3500 MHz band,” Microwave Opt. Technol. Lett., vol. 56, pp. 1323–1327, Jun. 2014.
[49] Y. Y. Fei, “Compact MIMO terminals with matching networks,” Ph.D. dissertation, University of Edinburg, UK, 2008.
[50] K. L. Wong and J. Y. Lu, “3.6-GHz 10-antenna array for MIMO operation in the smartphone,” Microwave Opt. Technol. Lett., vol. 57, pp. 1609-1704, Jul. 2015.
[51] I. E. Telatar, “Capacity of multi-antenna gaussian channels,” European Trans. Telecommun., vol. 10, pp. 585–595, Nov. 1999.
[52] C. Hetting, “Study: 8×8 MU-MIMO key to top-tier Wi-Fi 6 performance,” [Online]. Available: https://wifinowglobal.com/news-and-blog/study-8x8-mu-mimo-key-to-top -tier-wi-fi-6-performance/, Apr. 30, 2020.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2025-06-21
校外 Off-campus:開放下載的時間 available 2025-06-21

您的 IP(校外) 位址是 18.217.194.39
現在時間是 2024-04-18
論文校外開放下載的時間是 2025-06-21

Your IP address is 18.217.194.39
The current date is 2024-04-18
This thesis will be available to you on 2025-06-21.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2025-06-21

QR Code