Responsive image
博碩士論文 etd-0522114-232629 詳細資訊
Title page for etd-0522114-232629
論文名稱
Title
在干涉光場中雙丙烯酸酯聚合之研究
Polymerization of Diacrylate Mesogen in an Interference Field
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
70
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-09
繳交日期
Date of Submission
2014-06-23
關鍵字
Keywords
預配向、主鏈型高分子液晶、雙光子吸收、反飽和吸收曲線、雙丙烯酸酯
pre-aligned, TPA, mesogenic diacrylate, reverse saturable absorption curve, MCLCPs
統計
Statistics
本論文已被瀏覽 5670 次,被下載 513
The thesis/dissertation has been browsed 5670 times, has been downloaded 513 times.
中文摘要
主鏈型高分子液晶-雙丙烯酸酯異構物,RM257、RM82為具有液晶態並具有光敏特性的材料。我們過去研究發現,以兩款非主要吸收波段雷射光源照射,竟引致聚合。藉由光穿透率與強度關係計算出雙光子吸收係數,加以非線性光學量測法,Z-scan檢驗,觀察到在相變點附近有明顯的反飽和吸收。確立雙光子吸收為引致聚合的機制。
基於此複合特性,以雙光束(S-S偏振)干涉光場照射雙丙烯酸酯異構物。並藉由週期性建設性干涉光場與破壞性干涉光場在樣品上形成相對應之一維柵狀結構。觀察此柵狀結構,可發現部分區域有一致指向。本研究中,以相位延遲法觀測其內部分子指向。此外,以實驗驗證樣品在偏光顯微鏡下觀察到的亮、暗條紋,各別對應到建設性或破壞性干涉光場。
相較於提供單一光子能量的雷射光源,長波寬譜光源(λ>550 nm)也能引致聚合但需要更久時間。亦即雷射光源相較長波寬譜光源有較高的機率引致雙光子吸收。
預配向RM82樣品在向列液晶態有較為一致的排列。以He-Ne雷射為光源、不同偏振單光束,預配向方向或平行偏振方向或垂直偏振方向,聚焦後照射預配向樣品。觀測其聚合時間、聚合後的表面形貌及分子指向。一方面可藉此比較何種影響較鉅;高分子鏈或溝槽給予之錨定能;另一方面,可觀察聚合後表面形貌是否有改變。進一步,控制此柵狀結構內部指向,有做為相位光柵、光誘發配向、光子晶體…光電元件的潛力。
Abstract
Mesogenic diacrylate, RM257、RM82, kinds of main chain liquid crystal
polymers (MCLCPs) and light-sensitive materials. In our past research, two kinds of
laser light source induced the diacrylate mesogen polymerization was discovered. We
calculated the two-photo absorption coefficients by the transmission against intensity
of mesogenic diacrylate. Through none- linear optical measurement, Z-scan, the
reverse saturable absorption curve was observed near phase-transition temperature.
According to the TPA (two-photo absorption) coefficient and NLO (none-linear
absorption) effect, two-photo absorption progress to induce polymerization was
confirmed.
Base on the above characteristics, two –beam interference field with s-polarized
was applied to form a periodic grating on mesogenic diacrylate. Some stripes of the
grating oriented were observed. In this study, phase-retardation method was applied to
identify the director of the grating. In addition, experiments to make sure the
interference field; destructive field and constructive field each represent the stripes
dark or bright of grating in POM (polarizing optical microscope) observing.
As we know the polymerization time of light source of He-Ne laser (one beam)
irradiating to the RM82 cells. Compare to laser, broad-band light source(λ>550 nm)
also induced polymerization of RM82 but spending more time. That is, there is much
higher probability for laser light source than broad-band light source to cause TPA.
Pre-aligned RM82 sample oriented at nematic phase. One beam with different
polarization(p-polarized 、 s-polarized) illuminated pre-aligned sample to verify
polarization having less effect on orientation.. Through controlling the director and
polymerized area to obtain aligned cell which has potential for electro-optic device.
目次 Table of Contents
致謝........................................................................................................................ i
Abstract..................................................................................................................iii
目錄........................................................................................................................iv
圖目錄....................................................................................................................vii
表目錄.................................................................................................................... x
第一章 緒論............................................................................................................ 1
第二章 液晶簡介...................................................................................................... 2
2-1 液晶態 ..............................................................................................................2
2-2 液晶物理簡介 .................................................................................................... 2
2-2.1 指向向量與秩序參數 ....................................................................................... 2
2-2.2 電學異向性 .................................................................................................... 4
2-2.3 光學異向性 .................................................................................................... 5
2-2.4 連續彈性體理論 ...............................................................................................7
2-2.5 向列液晶態分子配向理論簡介 ...........................................................................8
第三章 高分子液晶................................................................................................. 11
3-1 高分子液晶簡介 ............................................................................................... 11
3-1.1 背景 ............................................................................................................ 11
3-1.2 分類 ................................................................................................... .........12
3-2 聚合 (Polymerization) .......................................................................................13
3-2.1 聚合過程簡介 ................................................................................................13
3-2.2 聚合反應分類 ................................................................................................13
第四章 雙丙烯酸酯的雙光子吸收現象........................................................................16
4-1 背景簡介 .........................................................................................................16
4-2 原理 ................................................................................................................16
4-3 雙光子吸收截面檢測法 ......................................................................................18
4-3.1 非線性穿透率法 .............................................................................................18
4-3.2 Z-scan 法 ......................................................................................................20
4-3.3 雙丙烯酸酯異構物於雙光子吸收檢測法的結果討論 ........................................... 22
第五章 光場作用下雙丙烯酸酯的聚合現象.................................................................23
5-1 樣品製備 .........................................................................................................23
5-2 樣品指向判別 ...................................................................................................25
5-2.1 實驗架設 .......................................................................................................25
5-2.2 雙丙烯酸酯材料介紹 ......................................................................................28
5-2.3 樣品聚合後外觀與光學圖像分析 ......................................................................29
5-2.4 液晶分子指向辨別法 ......................................................................................30
5-2.5 相位延遲法檢驗指向 ......................................................................................33
5-2.6 指向檢驗結果 ................................................................................................40
5-3 條紋區域相對於干涉光場區域判別 ......................................................................40
5-3.1 實驗架設 .......................................................................................................41
5-3.2 P 偏振單光束通過鋁箔光罩照射樣品結果 .........................................................41
5-3.3 P-P 偏振雙光束干涉光場照射樣品結果 ............................................................43
5-4 檢驗長波段寬譜光源對 RM82 樣品聚合的影響 .....................................................44
5-4.1 鹵素燈光譜(J-150W, 78 mm) ..........................................................................44
5-4.2 實驗架設 .......................................................................................................44
5-4.3 結果 .............................................................................................................45
5-5 光場偏振與表面作用力於 RM82 的影響 ..............................................................48
5-5.1 預配向 RM82 樣品 .........................................................................................48
5-5.2 改變偏振照射預配向 RM82 樣品 .....................................................................48
5-5.3 結果 .............................................................................................................49
第六章 總結............................................................................................................50
6-1 樣品指向判別與相對應光場辨識 .........................................................................50
6-2 檢驗長波寬譜光源對 RM82 樣品聚合的影響 ........................................................51
6-3 光場偏振與表面作用力於 RM82 的影響 ..............................................................52
參考文獻............................................................................................................... 53
參考文獻 References
[1] K. Amundson, Alfons van Blaaderen,* and Pierre Wiltzius, “Morphology and electro-optic properties of polymer-dispersed liquid-crystal films,” Phys. Rev. E, 55, 1646-1654 (1997).
[2] F. Reinitzer, “Beiträge zur Kenntniss des Cholestherins,” Monatsh. Chem., 9, 421-441 (1888).
[3] D. K. Yang, S. T. Wu, “Fundamentals of Liquid Crystal Devices,” John Wiley & Sons, Inc. (2006).
[4] P. G. de Gennes and J. Prost, “Physics of Liquid Crystals,” Oxford University, New York, U.S.A. (2006).
[5] C. W. Oseen, “The theory of liquid crystals,” Trans. Faraday Soc., 29, 883-899 (1933).
[6] H. Zocher, “The effect of a magnetic field on the nematic state,” Trans. Faraday Soc., 29, 945- 957 (1933).
[7] F.C. Frank, “I. Liquid Crystals. On the Theory of Liquid Crystals,” Discuss. Faraday Soc., 25, 19- 28 (1958).
[8] T. Uchida, “Surface alignment of liquid crystals,” in Liquid Crystals-applications and uses, Vol. 3, (Ed.: B. Bahadur), World Scientific, Singapore (1990).
[9] K. Takatoh, M. Hasegawa, M. Koden, N. Itoh, R. Hasegawa, and M. Sakamoto,
“Alignment technologies and applications of liquid crystal device,” Taylor & Francis, New York, U.S.A. (2005).
[10] B. Jerome, “Surface effects and anchoring in liquid crystals,” Rep. Prog. Phys.,54, 391- 451 (1991).
[11] A. Beiser, “Concepts of modern physics (6th edition),” McGraw-Hill, Boston,USA (2003).
[12] D. W. Berreman, “Alignment of liquid crystals by grooved surfaces,” Mol. Cryst. Liq. Cryst., 23, 215- 231 (1973).
[13] J. A. Castellano, “Surface Anchoring of Liquid Crystal Molecules on Various Substrates,” Mol. Cryst. Liq. Cryst., 94, 33- 41 (1983).
[14] J. M. Geary, J. W. Goodby, A. R. Kmetz, and J. S. Patel, “The mechanism of polymer alignment of liquid-crystal materials,” J. Appl. Phys., 62, 4100- 4108 (1987).
[15] Bawden, F. C., and Pirie, N. W., “The infectivity and interaction of nucleic acid preparations from tobacco mosaic virus,” J. Gen. Microbiol., 21, 438- 456(1959).
[16] A. Elliott, E. J. Ambrose, “Evidence of chain folding in polypeptides and proteins,” Disc Faraday Soc., 9, 246- 251(1950).
[17] P. J. Flory, “Statistical Thermodynamics of Semi-Flexible Chain Molecules,” Proc.R. Soc. London Ser. A, 234, 60 (1956).
[18] P. J. Flory G. Ronca, “ Theory of Systems of Rodlike Particles: I. Athermal systems,” Mol. Cryst. Liq. Cysrt., 54, 289. (1979).
[19] P. J. Flory, Adv. Polym. Sci., 59, 1 (1984)
[20] Goeppert-Mayer M., “Elementary processes with two quantum jumps,” Ann. Phys. (Leipzig), 9, 273- 294 (1931).
[21] W. Kaiser, C. G. B. Garrett, “Two-Photon Excitation in CaF2: Eu2+,” Phys. Rev. Lett.,7 , 229 (1961).
[22] H. S. Taylor , A. L. Marshall, “The Reaction of Hydrogen activated by Excited Mercury Atoms,” J. Phys. Chem., 29, 1140- 1147 (1925).
[23] W. J. Zheng and C. C. CHAN, “Two-photon absorption in diacrylate mesogen at
632.8nm wavelength,” EPL, 93, 13001(2011).
[24] S. A. Nelson, “Interference Phenomena, Compensation, and Optic Sign,” EENS 2110, Tulane University (2011).
[25] W. D. Nesse, “Introduction to optical mineralogy,” Oxford University, New York (1991).
[26] E. Hecht, “Optics (4th edition),” Addison Wesley, United States of America (2002).
[27] J. M. G. Cowie, “Polymers: Chemistry and Physics of Modern Materials (2nd Edition),” CRC Press (1991).
[28] Dirk J. Broer, Gregory P.Crawford, Slobodan Zumer, “Cross-Linked Liquid Crystalline Systems: From Rigid Polymer Networks to Elastomers”, CRC Press (2011).
[29] K. Takatoh, M.i Sakamoto, R. Hasegawa, M. Koden, N. Itoh, M. Hasegawa, “Alignment Technology and Applications of Liquid Crystal Devices,” CRC
Press (2005).
[30] Y. Q. Lin., “Temperature effect on threshold voltage and optical property of
twisted nematic liquid crystal with applied different voltages,” [J]. Opt Int. J. Light Electron,121 ,1693-1697 (2009).
[31] S. Dhara., “Enhancement of Frederick’s threshold voltage of nematic liquid crystals in the cells,” [J]. Jounal of molecular Liquids, 147, 145 (2009).
[32] R. DeSalvo, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Z-scan measurements of the anisotropy of nonlinear refraction and absorption in crystals,” Opt Lett., 18, 194-196 (1993).
[33] T. F. Boggess, K. M. Bohnert, K. Mansour, S. C. Moss, I. W. Boyd, A. L. Smirl, “Simultaneous measurement of the two-photon coefficient and free-carrier cross section above the bandgap of crystalline silicon,” IEEE J. Quant. Electron. , 22, 360-368 (1986).
[34] M. Sheik-Bahae, A. A. Said, T. Wei, D. Hagan, and E. W. Van Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quant. Electron., 26, 760-769 (1990).
[35] J. P. Hermann and J. Ducuing, “Absolute Measurement of Two-Photon Cross Sections,” Phys. Rev. A, 5, 2557 (1972).
[36] 于紹偉, “高分子液晶在全像干涉光場的組構,”碩士論文,國立中山大學 (2008).
[37] 王君旗,“用光蝕刻技術製備鐵電液晶顯示器間隔物及相關特性之研究,” 碩士論文,國立中山大學 (2008).
[38] 詹智傑,“雙丙烯酸酯作為全像干涉光場紀錄材料之研究,” 碩士論文,國立中山大學(2010).
[39] 王維建,“雙丙烯酸酯分子在 He-Ne 雷射照射下的聚合及其高分子組構之研究,”碩士論文,國立中山大學(2011).
[40] 張仕仁,“用雙丙烯酸酯薄膜紀錄氦氖雷射全像干涉光場光訊息之研究,” 碩士論文, 國立中山大學 (2011).
[41] 李明鴻,“利用 Z-SCAN 技術對雙丙烯酸酯材料的非線性光學特性之研究,” 碩士論文,國立中山大學 (2012).
[42] X. Z. Tang, Z. F. Zou, L. Xuan, “ The effects of polymerization temperature and orientation order on monomer conversion,” Acta Photonica Sinica.,39 ,29-32(2010)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code