Responsive image
博碩士論文 etd-0522115-103007 詳細資訊
Title page for etd-0522115-103007
論文名稱
Title
無載波幅相調變輔以數位訊號處理應用於短距離光連結與長距離被動光網路
Application of Carrier-Less Amplitude-Phase Modulation in Short-Reach Optical Interconnection and Long-Reach PONs Supplemented by Digital Signal Processing
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
83
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-16
繳交日期
Date of Submission
2015-06-22
關鍵字
Keywords
數位訊號處理、垂直共振腔體面射型雷射、長距離被動光網路、無載波幅相調變、短距離光連結
Carrier-Less Amplitude-Phase Modulation, Vertical Cavity Surface Emitting Laser, Digital Signal Processing, Long-Reach Passive Optical Network, Short-Reach Interconnection
統計
Statistics
本論文已被瀏覽 5697 次,被下載 62
The thesis/dissertation has been browsed 5697 times, has been downloaded 62 times.
中文摘要
在此篇論文中,運用了高頻譜使用效率以及高成本效益的無載波幅相調變輔以使用多種數位訊號處理應用於短距離光連結與長距離被動光網路。
在短距離光連接應用中,使用雙模態垂直共振腔體面射型雷射來延伸傳輸距離至1000公尺以上使用OM4多模光纖,輔以使用時域前饋式等化器以及反饋式等化器取代頻域等化器,成功在傳輸距離5公尺時達到 56 Gbps,並且在經過 1005公尺時維持著40 Gbps 的高傳輸速率。
在長距離被動光網路應用中,呈現了4頻道分波多工技術,使用24 dBm高發射功率來解決傳輸60公里後所產生的頻譜功率衰減,利於延伸3 dB頻寬。系統中使用 10-GHz 電致吸收光調變器以及 PIN 光電二極體,並且輔以使用非線性補償濾波器,在傳輸60公里後達到224 Gbps 的高傳輸速率,在長距離被動光網路中能提供64個光網路單元並且擁有 > 3 Gbps 的高傳輸速率。
Abstract
In this thesis, we using high spectra efficiency and cost-effective carrier-less amplitude-phase modulation supplemented by digital signal processing in short-reach optical interconnection and long-reach passive optical network.
In short-reach optical interconnection system, using novel two-mode vertical cavity surface emitting laser to extend transmission length over 1005 m OM4 fiber, using feed-forward and decision feedback equalization to substitute for frequency domain equalization. Successfully demonstrate 56 Gbps for optical back-to-back and maintain 40 Gbps high capacity after 1005 m OM4 fiber transmission.
In long-reach passive optical network system, we demonstrate 4-channel wavelength division multiplexing with 24 dBm high launch power to solve the power fading phenomenon after transmission to successfully extend 3 dB bandwidth. By using electro-absorption modulation and PIN detector supplemented by nonlinear Volterra filter compensation, achieve 224 Gbps high capacity after 60 km transmission and have 12 dB power budget per wavelength which can offer 16 optical network unit and each down-stream speed > 3 Gbps.
目次 Table of Contents
Acknowledgements ii
中文摘要 iii
Abstract iv
List of Tables viii
List of Figure ix
Chapter 1 Introduction 1
Preface 1
1.1 Short-Reach Optical Interconnections 2
1.1.1 Introduction 2
1.1.2 Motivation 6
1.2 Long-Reach Passive Optical Network 7
1.2.1 Introduction 7
1.2.2 Motivation 8
Chapter 2 Digital Modulation Format 10
2.1 Quadrature Amplitude Modulation 10
2.2 Orthogonal Frequency Division Multiplexing 12
2.3 Carrier-Less Amplitude-Phase Modulation 16
Chapter 3 Digital Signal Processing Techniques 24
3.1 Feed-Forward Equalization 24
3.2 Decision Feedback Equalization 26
3.3 Nonlinear Volterra Filter 28
3.4 Frequency Domain Equalization 31
3.5 Pre-Emphasis 33
3.6 Bit Loading Algorithm 34
Chapter 4 Experimental Demonstration of System 37
4.1 High-Speed Optical Interconnect Over OM4 Fiber Using Two-Mode VCSEL 37
4.1.1 Preface 37
4.1.2 Two-Mode VCSEL 39
4.1.3 Experimental Setup 42
4.1.4 Experimental Results 44
4.2 High Power Budget and High Speed Long Reach PON WDM System 51
4.2.1 Preface 51
4.2.2 Experiment Setup 53
4.2.3 Experimental Results 55
Chapter 5 Conclusion 64
Reference 65
參考文獻 References
[1]“The Zettabyte Era-Trends and Analysis,” Cisco White Paper, 2014
[2]“Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2013–2018,” Cisco White Paper, 2014
[3] C. F. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, Google Inc., IEEE Communication Magazine, vol. 48, pp. 32-39, July 2010
[4] L. A. Coldren, S. W. Corzine, M. L. Mashanovitch, “Diode Lasers and Photonic Integrated Circuits,” Wiley, New York, USA, 2012
[5] IEEE P802.3ae 10Gb/s Ethernet Task Force
[6] Z. Guoying, M. De Leenheer, A. Morea, and B. Mukherjee, “A survey on OFDM-based elastic core optical networking,” IEEE Commun. Surv. Tutorials, vol. 15, pp. 65–87, 2013.
[7] D. Z. Hsu, C. C. Wei, H. Y. Chen, J. Chen, M. C. Yuang, S.-H. Lin, and W.-Y. Li, “21 Gb/s after 100 km OFDM long-reach PON transmission using a cost-effective electroabsorption modulator,” Opt. Express, vol. 18, pp. 27758–27763, 2010.
[8] D. P. Shea and J. E. Mitchell, “A 10-Gb/s 1024-way-split 100-km long reach optical-access network,” J. Lightwave Technol., vol. 25, pp. 685–693, 2007.
[9] B. Liu, J. Shim, Y. J. Chiu, H. F. Chou, J. Piprek, and J. E. Bowers, “Slope efficiency and dynamic range of travelingwave multiple-quantum-well electroabsorption modulators,” IEEE Photon. Technol. Lett., vol. 16, pp. 590–592, 2004.
[10] G. Agrawal, Nonlinear Fiber Optics, 3rd ed. Academic, 2001.
[11] National Instruments “Quadrature Amplitude Modulation (QAM)”, Nov 05, 2014.
[12] John G. Proakis, "Digital Communications, 3rd Edition".
[13] Lajos Hanzo, William Webb, Thomas Keller, Single and multicarrier modulation: Principles and applications, 2nd edition, IEEE Computer Society.exing
[14] A short tutorial on the significance of cyclic prefix in OFDM systems
[15] A. F. Shalash and K. K. Parhi, “Multidimensional carrierless AM/PM systems for digital subscriber loops,” IEEE Transactions on Communications, vol. 47, pp. 1655-1667, Nov 1999.
[16] J. J. Werner, “Tutorial on Carrierless AM/PM - Part 1 - Fundamentals and digital CAP transmitter,” Document for ANSI X3T9.5 TP/PMD, St. Petersburg Beach, 1992.
[17] J.J. Werner, “Tutorial on Carrierless AM/PM - Part 2 - Performance of bandwidth-efficient line codes,” Document for ANSI X3T9.5 TP/PMD, Austin, 1993.
[18] Starr, Thomas (ed.). DSL Advances. Uppser Saddle River, NJ: Prentice Hall
[19] Conlan, Patrick J. (2009-04-20). "WAN and Teleworker Connections". Cisco Network Professional's Advanced Internetworking Guide (CCNP Series). Indianapolis: John Wiley & Sons
[20] J. L. Wei, J. D. Ingham, D. G. Cunningham, R. V. Penty, and I. H. White, “Performance and Power Dissipation Comparisons Between 28 Gb/s NRZ, PAM, CAP and Optical OFDM Systems for Data Communication Applications,” Journal of Lightwave Technology, vol. 30, pp. 3273-3279, 2012.
[21] R. W. Lucky, J. Salz, and E. J. Weldon jr., Principles of Data Communication, McGraw-Hill, New York, 1968
[22] A. Shalash and K. K. Parhi, “Comparison of discrete multitone and carrierless AM/PM techniques for line equalization,” IEEE International Symposium on Circuits and Systems, vol. 2, pp. 560-563, 1996.
[23] Diniz P. Adaptive Filtering 3ed., Springer, 2008.
[24] John G. Proakis and Masoud Salehi, Digital Communications, 5th ed.
[25] D. A. George, R. R. Bowen, and J. R. Storey, “An adaptive decision feedback equalizer,” IEEE Transactions on Communication Technology, vol. com-19, pp. 281-93, June 1971.
[26] C. Kaiyun, C. Gang, H. Qunfeng, and X. Zhengyuan, “Indoor optical wireless communication by ultraviolet and visible light,” Proceedings of the SPIE - The International Society for Optical Engineering, vol. 7464, pp. 74640D (9 pp.)-74640D (9 pp.), 2009.
[27] G. P. Agrawal, Nonlinear Fiber Optics, the 3rd edition
[28] ITU-T Recommendation G.975.1, Appendix I.9, 2004.
[29] S. C. J. Lee, F. Breyer, S. Randel, D. Cardenas, H. P. A. Van den Boom, and A. M. J. Koonen, “Discrete multitone modulation for high-speed data transmission over multimode fibers using 850-nm VCSEL,” in Optical Fiber Communication - incudes post deadline papers, 2009. OFC 2009. Conference on, 2009, pp. 1-3.
[30] D. jiang “Optimal Bit Loading Algorithm for Power-Line Communication Systems subject to Individual Channel Power Constraints,” Communication Technology, 2006, pp. 1-4
[31] J. W. Shi, J. C. Yan, J. M. Wun, J. Chen, and Y. J. Yang, “Oxide-Relief and Zn-Diffusion 850-nm Vertical-Cavity Surface-Emitting Lasers With Extremely Low Energy-to-Data-Rate Ratios for 40 Gbit/s Operations,” IEEE J. Sel. Topics Quantum Electron, vol. 19, Article 7900208, March 2013
[32] I. C. Lu, C.C. Wei, H. Y. Chen, K. Z. Chen, C. H. Huang, K. L. Chi, J. W. Shi, F. I. Lai, D. H. Hsieh, H. C. Kuo, W. Lin, S. W. Chiu, and J. h. Chen “High-Speed and Duo-Mode 850 nm VCSELs for 47 Gbps Optical Interconnect over 1 km OM4 Fiber”
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code