Responsive image
博碩士論文 etd-0522115-120241 詳細資訊
Title page for etd-0522115-120241
論文名稱
Title
探討負向調控GNMT在肝癌衍生因子誘導之肝癌癌化現象的角色
Glycine N-methyltransferase (GNMT) Downregulation Participates in Hepatoma-derived Growth Factor (HDGF)-mediated Liver Carcinogenesis
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
82
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-15
繳交日期
Date of Submission
2015-06-22
關鍵字
Keywords
肝癌衍生生長因子、肝癌、腫瘤效應、苷氨酸-氮-甲基轉移酶、抑癌
Glycine N-methyltransferase (GNMT), hepatoma-derived growth factor (HDGF), hepatocellular carcinoma (HCC), Tumor suppressor gene, Tumorigenesis
統計
Statistics
本論文已被瀏覽 5696 次,被下載 40
The thesis/dissertation has been browsed 5696 times, has been downloaded 40 times.
中文摘要
肝癌是世界上第五大癌症。肝臟病變會循序表現出慢性肝炎、脂肪肝,肝纖維化到肝癌。苷氨酸-氮-甲基轉移酶(Glycine N-methyltransferase; GNMT)是一個肝癌抑制基因,在肝發炎和肝癌進展中扮演重要的角色。過去的研究發現在肝癌形成的早期GNMT就消失或去活化。本實驗室發現GNMT基因剔除小鼠都會產生自發性地慢性肝炎,脂肪肝和肝癌。 肝癌衍生生長因子(Hepatoma-derived growth factor; HDGF)是從人類肝癌細胞株的培養液分離出來的生長因子,近十年來的研究指出,HDGF過量表現與許多腫瘤的發生有關,包括肝癌的惡化、腫瘤分化程度、進展(包膜侵犯)、轉移、侵略、血管新生、腫瘤復發以及病患預後有密切關係,分化越完全、預後較差的肝癌患者其HDGF表現量也較多。我們從肝癌患者檢體觀察到,GNMT缺失與HDGF過量表現在肝癌形成過程中有緊密的關聯,但其中詳細機制尚未清楚。而更進一步研究發現,GNMT mRNA表現量在HDGF-/-老鼠的肝臟比野生型多了2.5倍;相反地,HDGF的表現量在GNMT-/-老鼠的肝臟明顯地提高了。在人類肝癌細胞株的實驗中觀察到,外加HDGF蛋白質會抑制GNMT基因表現活性、mRNA與蛋白質表現量。利用攜帶GNMT基因的腺病毒增加GNMT表現量能有效抑制HDGF所誘導的腫瘤效應(tumorigenesis),包括移行(metastasis)、聚落形成(colony formation)、EMT相關分子誘發、幹細胞相關分子誘發與球體形成(sphere formation)。這些研究結果首次觀察到HDGF會負向調控GNMT表現,而提高GNMT表現量能有效遏止HDGF誘導的癌症惡化現象。
Abstract
Hepatocellular carcinoma (HCC) is the fifth most prevalent cancer worldwide. Chronic hepatitis, steatosis, and liver fibrosis frequently occur before hepatoma development. Glycine N-methyltransferase (GNMT), which is a tumor suppressor gene, plays a central role in hepatic inflammation and liver carcinogenesis. GNMT loss or inactivation occurs at very early stage during liver carcinogenesis. GNMT knockout mice developed chronic hepatitis, fatty liver and HCC spontaneously. Hepatoma-derived growth factor (HDGF) is a novel growth factor identified from human hepatoma cell line. Elevated HDGF expression is associated with hepatic fibrosis and malignancy of HCC cells. HDGF overexpression is correlated with poor prognosis in HCC patients after surgery. Although GNMT depletion and HDGF elevation are involved in liver fibrosis and carcinogenesis, the relationship between GNMT loss and HDGF increment during HCC progression has never been studied. The present study aims to elucidate the probable gene regulation between HDGF and GNMT during liver carcinogenesis. By using 30 pairs of resected human HCC specimens, immunoblot analysis showed that GNMT protein level was reduced in 28 HCC tissues while HDGF protein level was increased in 19 HCC samples. Besides, 18 HCC tissues exhibited concomitant HDGF upregulation and GNMT downregulation. Statistical analysis unveiled a significant correlation between HDGF upregulation and GNMT downregulation in HCC tissues. By using an array of human hepatoma cells, immunoblot analysis also revealed a similar trend of HDGF increment and GNMT reduction in the poorly differentiated hepatoma cells. Adenovirus gene delivery technique was employed to delineate the role of HDGF on GNMT regulation in hepatoma cells. It was found that adenovirus-mediated HDGF overexpression resulted in reduced GNMT expression whereas HDGF knockdown led to increased GNMT expression in various human hepatoma cells (including HepG2, Hep3B and Huh7 cells). Importantly, HDGF modulation suppressed GNMT expression at transcriptional and translational level. Likewise, exogenous supply of HDGF also caused a dose-dependent reduction in GNMT mRNA, protein and promoter activities in hepatoma cells. Finally, expression analysis of HDGF-null mice indicated that HDGF ablation elicited a significant elevation of GNMT mRNA and protein level in the livers. Together, these results uncover the novel pro-oncogenic mechanism of HDGF through GNMT downregulation.
In the second part of this study, we evaluated whether GNMT could reciprocally regulate HDGF expression in HCC cells. By using GNMT knockout mice, immunofluorescence analysis showed that expression of HDGF/nucleolin axis was prominently enhanced in the livers compared with wild type (WT). However, adenovirus-mediated GNMT overexpression suppressed HDGF expression only in HepG2, but not Hep3B or Huh7 hepatoma cells. Despite the incapability to halt HDGF expression, GNMT restoration potently suppress the invasiveness and anchorage-independent growth of hepatoma cells even in the presence of excessive HDGF. Above all, GNMT overexpression significantly inhibited the endogenous and HDGF-stimulated self-renewal capability of hepatoma cells. This was associated with downregulation of epithelial-mesenchymal transition (EMT) markers and hepatic cancer stem cells markers. Thus, GNMT gene therapy may hold potential for HCC through suppressing oncogenic behavior, metastasis and hepatic cancer stemness. In summary, this study unveils the negative GNMT regulation by HDGF during HCC progression. Moreover, GNMT and HDGF may constitute the novel diagnostic and therapeutic targets for HCC.
目次 Table of Contents
Verification letter from the Oral Examination Committee -------------------------ⅰ
Acknowledgement ---------------------------------------------------------------------------ⅱ
Chinese Abstract ----------------------------------------------------------------------------ⅲ
English Abstract -----------------------------------------------------------------------------ⅳ
Table of Contents --------------------------------------------------------------------------ⅶ
Abbreviations --------------------------------------------------------------------------------ⅷ
Introduction ------------------------------------------------------------------------------------1
Specific Aims -----------------------------------------------------------------------------------8
Materials and Methods ----------------------------------------------------------------------9
Results -----------------------------------------------------------------------------------------16
Section I. HDGF modulates GNMT expression in HCC in vivo and in vitro. 16
Section II. GNMT restoration reversed the HDGF-induced malignant behaviours. 17
Discussion -------------------------------------------------------------------------------------22
Conclusion ------------------------------------------------------------------------------------25
Future perspectives -------------------------------------------------------------------------26
Figures and legends -------------------------------------------------------------------------27
References ------------------------------------------------------------------------------------61
參考文獻 References
1. European Association For The Study Of The, L., European Organisation For, R., and Treatment Of, C. (2012) EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. Journal of hepatology 56, 908-943
2. Ampuero, J., and Romero-Gomez, M. (2015) Prevention of hepatocellular carcinoma by correction of metabolic abnormalities: Role of statins and metformin. World journal of hepatology 7, 1105-1111
3. Parkin, D. M., Bray, F., Ferlay, J., and Pisani, P. (2005) Global cancer statistics, 2002. CA: a cancer journal for clinicians 55, 74-108
4. Fracanzani, A. L., Fargion, S., Stazi, M. A., Valenti, L., Amoroso, P., Cariani, E., Sangiovanni, A., Tommasini, M., Rossini, A., Bertelli, C., Fatta, E., Patriarca, V., Brescianini, S., and Stroffolini, T. (2005) Association between heterozygosity for HFE gene mutations and hepatitis viruses in hepatocellular carcinoma. Blood cells, molecules & diseases 35, 27-32
5. Rudnick, D. A., and Perlmutter, D. H. (2005) Alpha-1-antitrypsin deficiency: a new paradigm for hepatocellular carcinoma in genetic liver disease. Hepatology 42, 514-521
6. Fracanzani, A. L., Piperno, A., Valenti, L., Fraquelli, M., Coletti, S., Maraschi, A., Consonni, D., Coviello, E., Conte, D., and Fargion, S. (2010) Hemochromatosis in Italy in the last 30 years: role of genetic and acquired factors. Hepatology 51, 501-510
7. Baffy, G., Brunt, E. M., and Caldwell, S. H. (2012) Hepatocellular carcinoma in non-alcoholic fatty liver disease: an emerging menace. Journal of hepatology 56, 1384-1391
8. Shiraha, H., Yamamoto, K., and Namba, M. (2013) Human hepatocyte carcinogenesis (review). International journal of oncology 42, 1133-1138
9. Weng, C. J., Chau, C. F., Hsieh, Y. S., Yang, S. F., and Yen, G. C. (2008) Lucidenic acid inhibits PMA-induced invasion of human hepatoma cells through inactivating MAPK/ERK signal transduction pathway and reducing binding activities of NF-kappaB and AP-1. Carcinogenesis 29, 147-156
10. Woo, H. G., Park, E. S., Thorgeirsson, S. S., and Kim, Y. J. (2011) Exploring genomic profiles of hepatocellular carcinoma. Molecular carcinogenesis 50, 235-243
11. Gupta, P. B., Onder, T. T., Jiang, G., Tao, K., Kuperwasser, C., Weinberg, R. A., and Lander, E. S. (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138, 645-659
12. Vinogradov, S., and Wei, X. (2012) Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomedicine 7, 597-615
13. Kumar, M., Zhao, X., and Wang, X. W. (2011) Molecular carcinogenesis of hepatocellular carcinoma and intrahepatic cholangiocarcinoma: one step closer to personalized medicine? Cell & bioscience 1, 5
14. Sell, S. (2002) Cellular origin of hepatocellular carcinomas. Seminars in cell & developmental biology 13, 419-424
15. Lu, S. C., and Mato, J. M. (2012) S-adenosylmethionine in liver health, injury, and cancer. Physiological reviews 92, 1515-1542
16. Yin, S., Li, J., Hu, C., Chen, X., Yao, M., Yan, M., Jiang, G., Ge, C., Xie, H., Wan, D., Yang, S., Zheng, S., and Gu, J. (2007) CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. International journal of cancer. Journal international du cancer 120, 1444-1450
17. Ma, S., Chan, K. W., Hu, L., Lee, T. K., Wo, J. Y., Ng, I. O., Zheng, B. J., and Guan, X. Y. (2007) Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 132, 2542-2556
18. Cao, L., Zhou, Y., Zhai, B., Liao, J., Xu, W., Zhang, R., Li, J., Zhang, Y., Chen, L., Qian, H., Wu, M., and Yin, Z. (2011) Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines. BMC gastroenterology 11, 71
19. Dontu, G., Abdallah, W. M., Foley, J. M., Jackson, K. W., Clarke, M. F., Kawamura, M. J., and Wicha, M. S. (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes & development 17, 1253-1270
20. Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., Brooks, M., Reinhard, F., Zhang, C. C., Shipitsin, M., Campbell, L. L., Polyak, K., Brisken, C., Yang, J., and Weinberg, R. A. (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704-715
21. Cicalese, A., Bonizzi, G., Pasi, C. E., Faretta, M., Ronzoni, S., Giulini, B., Brisken, C., Minucci, S., Di Fiore, P. P., and Pelicci, P. G. (2009) The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell 138, 1083-1095
22. Yang, Z. F., Ho, D. W., Ng, M. N., Lau, C. K., Yu, W. C., Ngai, P., Chu, P. W., Lam, C. T., Poon, R. T., and Fan, S. T. (2008) Significance of CD90+ cancer stem cells in human liver cancer. Cancer cell 13, 153-166
23. Yang, Z. F., Ngai, P., Ho, D. W., Yu, W. C., Ng, M. N., Lau, C. K., Li, M. L., Tam, K. H., Lam, C. T., Poon, R. T., and Fan, S. T. (2008) Identification of local and circulating cancer stem cells in human liver cancer. Hepatology 47, 919-928
24. Ma, S., Lee, T. K., Zheng, B. J., Chan, K. W., and Guan, X. Y. (2008) CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene 27, 1749-1758
25. Yamashita, T., Ji, J., Budhu, A., Forgues, M., Yang, W., Wang, H. Y., Jia, H., Ye, Q., Qin, L. X., Wauthier, E., Reid, L. M., Minato, H., Honda, M., Kaneko, S., Tang, Z. Y., and Wang, X. W. (2009) EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology 136, 1012-1024
26. Zen, Y., Fujii, T., Yoshikawa, S., Takamura, H., Tani, T., Ohta, T., and Nakanuma, Y. (2007) Histological and culture studies with respect to ABCG2 expression support the existence of a cancer cell hierarchy in human hepatocellular carcinoma. The American journal of pathology 170, 1750-1762
27. Zhu, Z., Hao, X., Yan, M., Yao, M., Ge, C., Gu, J., and Li, J. (2010) Cancer stem/progenitor cells are highly enriched in CD133+CD44+ population in hepatocellular carcinoma. International journal of cancer. Journal international du cancer 126, 2067-2078
28. Haraguchi, N., Ishii, H., Mimori, K., Tanaka, F., Ohkuma, M., Kim, H. M., Akita, H., Takiuchi, D., Hatano, H., Nagano, H., Barnard, G. F., Doki, Y., and Mori, M. (2010) CD13 is a therapeutic target in human liver cancer stem cells. The Journal of clinical investigation 120, 3326-3339
29. Yeo, E. J., and Wagner, C. (1994) Tissue distribution of glycine N-methyltransferase, a major folate-binding protein of liver. Proceedings of the National Academy of Sciences of the United States of America 91, 210-214
30. Kerr, S. J. (1972) Competing methyltransferase systems. The Journal of biological chemistry 247, 4248-4252
31. Liao, Y. J., Chen, K. H., Huang, S. F., Chen, T. L., Wang, C. K., Chien, C. H., Tsai, T. F., Liu, S. P., and Chen, Y. M. (2010) Deficiency of glycine N-methyltransferase results in deterioration of cellular defense to stress in mouse liver. Proteomics. Clinical applications 4, 394-406
32. Ogawa, H., Gomi, T., Horii, T., Ogawa, H., and Fujioka, M. (1984) Molecular cloning of cDNA for rat glycine methyltransferase. Biochemical and biophysical research communications 124, 44-50
33. Pattanayek, R., Newcomer, M. E., and Wagner, C. (1998) Crystal structure of apo-glycine N-methyltransferase (GNMT). Protein science : a publication of the Protein Society 7, 1326-1331
34. Fu, Z., Hu, Y., Konishi, K., Takata, Y., Ogawa, H., Gomi, T., Fujioka, M., and Takusagawa, F. (1996) Crystal structure of glycine N-methyltransferase from rat liver. Biochemistry 35, 11985-11993
35. Krupenko, N. I., and Wagner, C. (1997) Transport of rat liver glycine N-methyltransferase into rat liver nuclei. The Journal of biological chemistry 272, 27140-27146
36. Liao, Y. J., Chen, T. L., Lee, T. S., Wang, H. A., Wang, C. K., Liao, L. Y., Liu, R. S., Huang, S. F., and Chen, Y. M. (2012) Glycine N-methyltransferase deficiency affects Niemann-Pick type C2 protein stability and regulates hepatic cholesterol homeostasis. Molecular medicine 18, 412-422
37. Liao, Y. J., Liu, S. P., Lee, C. M., Yen, C. H., Chuang, P. C., Chen, C. Y., Tsai, T. F., Huang, S. F., Lee, Y. H., and Chen, Y. M. (2009) Characterization of a glycine N-methyltransferase gene knockout mouse model for hepatocellular carcinoma: Implications of the gender disparity in liver cancer susceptibility. International journal of cancer. Journal international du cancer 124, 816-826
38. Liu, S. P., Li, Y. S., Chen, Y. J., Chiang, E. P., Li, A. F., Lee, Y. H., Tsai, T. F., Hsiao, M., Huang, S. F., and Chen, Y. M. (2007) Glycine N-methyltransferase-/- mice develop chronic hepatitis and glycogen storage disease in the liver. Hepatology 46, 1413-1425
39. Luka, Z., Capdevila, A., Mato, J. M., and Wagner, C. (2006) A glycine N-methyltransferase knockout mouse model for humans with deficiency of this enzyme. Transgenic research 15, 393-397
40. Martinez-Chantar, M. L., Vazquez-Chantada, M., Ariz, U., Martinez, N., Varela, M., Luka, Z., Capdevila, A., Rodriguez, J., Aransay, A. M., Matthiesen, R., Yang, H., Calvisi, D. F., Esteller, M., Fraga, M., Lu, S. C., Wagner, C., and Mato, J. M. (2008) Loss of the glycine N-methyltransferase gene leads to steatosis and hepatocellular carcinoma in mice. Hepatology 47, 1191-1199
41. Yang, B., Guo, M., Herman, J. G., and Clark, D. P. (2003) Aberrant promoter methylation profiles of tumor suppressor genes in hepatocellular carcinoma. The American journal of pathology 163, 1101-1107
42. Calvisi, D. F., Ladu, S., Gorden, A., Farina, M., Conner, E. A., Lee, J. S., Factor, V. M., and Thorgeirsson, S. S. (2006) Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology 130, 1117-1128
43. Martinez-Chantar, M. L., Lu, S. C., Mato, J. M., Luka, Z., Wagner, C., French, B. A., and French, S. W. (2010) The role of stem cells/progenitor cells in liver carcinogenesis in glycine N-methyltransferase deficient mice. Experimental and molecular pathology 88, 234-237
44. Nakamura, H., Izumoto, Y., Kambe, H., Kuroda, T., Mori, T., Kawamura, K., Yamamoto, H., and Kishimoto, T. (1994) Molecular cloning of complementary DNA for a novel human hepatoma-derived growth factor. Its homology with high mobility group-1 protein. The Journal of biological chemistry 269, 25143-25149
45. Nakamura, H., Kambe, H., Egawa, T., Kimura, Y., Ito, H., Hayashi, E., Yamamoto, H., Sato, J., and Kishimoto, S. (1989) Partial purification and characterization of human hepatoma-derived growth factor. Clinica chimica acta; international journal of clinical chemistry 183, 273-284
46. Kishima, Y., Yamamoto, H., Izumoto, Y., Yoshida, K., Enomoto, H., Yamamoto, M., Kuroda, T., Ito, H., Yoshizaki, K., and Nakamura, H. (2002) Hepatoma-derived growth factor stimulates cell growth after translocation to the nucleus by nuclear localization signals. The Journal of biological chemistry 277, 10315-10322
47. Oliver, J. A., and Al-Awqati, Q. (1998) An endothelial growth factor involved in rat renal development. The Journal of clinical investigation 102, 1208-1219
48. Chen, S. C., Hu, T. H., Huang, C. C., Kung, M. L., Chu, T. H., Yi, L. N., Huang, S. T., Chan, H. H., Chuang, J. H., Liu, L. F., Wu, H. C., Wu, D. C., Chang, M. C., and Tai, M. H. (2015) Hepatoma-derived growth factor/nucleolin axis as a novel oncogenic pathway in liver carcinogenesis. Oncotarget
49. Kao, Y. H., Chen, C. L., Jawan, B., Chung, Y. H., Sun, C. K., Kuo, S. M., Hu, T. H., Lin, Y. C., Chan, H. H., Cheng, K. H., Wu, D. C., Goto, S., Cheng, Y. F., Chao, D., and Tai, M. H. (2010) Upregulation of hepatoma-derived growth factor is involved in murine hepatic fibrogenesis. Journal of hepatology 52, 96-105
50. Chen, S. C., Kung, M. L., Hu, T. H., Chen, H. Y., Wu, J. C., Kuo, H. M., Tsai, H. E., Lin, Y. W., Wen, Z. H., Liu, J. K., Yeh, M. H., and Tai, M. H. (2012) Hepatoma-derived growth factor regulates breast cancer cell invasion by modulating epithelial--mesenchymal transition. The Journal of pathology 228, 158-169
51. Yoshida, K., Nakamura, H., Okuda, Y., Enomoto, H., Kishima, Y., Uyama, H., Ito, H., Hirasawa, T., Inagaki, S., and Kawase, I. (2003) Expression of hepatoma-derived growth factor in hepatocarcinogenesis. Journal of gastroenterology and hepatology 18, 1293-1301
52. Wang, L., Jiang, Q., Hua, S., Zhao, M., Wu, Q., Fu, Q., Fang, W., and Guo, S. (2014) High nuclear expression of HDGF correlates with disease progression and poor prognosis in human endometrial carcinoma. Disease markers 2014, 298795
53. Zhang, J., Ren, H., Yuan, P., Lang, W., Zhang, L., and Mao, L. (2006) Down-regulation of hepatoma-derived growth factor inhibits anchorage-independent growth and invasion of non-small cell lung cancer cells. Cancer research 66, 18-23
54. Yamamoto, S., Tomita, Y., Hoshida, Y., Takiguchi, S., Fujiwara, Y., Yasuda, T., Doki, Y., Yoshida, K., Aozasa, K., Nakamura, H., and Monden, M. (2006) Expression of hepatoma-derived growth factor is correlated with lymph node metastasis and prognosis of gastric carcinoma. Clinical cancer research : an official journal of the American Association for Cancer Research 12, 117-122
55. Yoshida, K., Tomita, Y., Okuda, Y., Yamamoto, S., Enomoto, H., Uyama, H., Ito, H., Hoshida, Y., Aozasa, K., Nagano, H., Sakon, M., Kawase, I., Monden, M., and Nakamura, H. (2006) Hepatoma-derived growth factor is a novel prognostic factor for hepatocellular carcinoma. Annals of surgical oncology 13, 159-167
56. Chen, X., Yun, J., Fei, F., Yi, J., Tian, R., Li, S., and Gan, X. (2012) Prognostic value of nuclear hepatoma-derived growth factor (HDGF) localization in patients with breast cancer. Pathology, research and practice 208, 437-443
57. Ren, H., Tang, X., Lee, J. J., Feng, L., Everett, A. D., Hong, W. K., Khuri, F. R., and Mao, L. (2004) Expression of hepatoma-derived growth factor is a strong prognostic predictor for patients with early-stage non-small-cell lung cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 22, 3230-3237
58. Iwasaki, T., Nakagawa, K., Nakamura, H., Takada, Y., Matsui, K., and Kawahara, K. (2005) Hepatoma-derived growth factor as a prognostic marker in completely resected non-small-cell lung cancer. Oncology reports 13, 1075-1080
59. Hu, T. H., Lin, J. W., Chen, H. H., Liu, L. F., Chuah, S. K., and Tai, M. H. (2009) The expression and prognostic role of hepatoma-derived growth factor in colorectal stromal tumors. Diseases of the colon and rectum 52, 319-326
60. Chang, K. C., Tai, M. H., Lin, J. W., Wang, C. C., Huang, C. C., Hung, C. H., Chen, C. H., Lu, S. N., Lee, C. M., Changchien, C. S., and Hu, T. H. (2007) Hepatoma-derived growth factor is a novel prognostic factor for gastrointestinal stromal tumors. International journal of cancer. Journal international du cancer 121, 1059-1065
61. Uyama, H., Tomita, Y., Nakamura, H., Nakamori, S., Zhang, B., Hoshida, Y., Enomoto, H., Okuda, Y., Sakon, M., Aozasa, K., Kawase, I., Hayashi, N., and Monden, M. (2006) Hepatoma-derived growth factor is a novel prognostic factor for patients with pancreatic cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 12, 6043-6048
62. Hsu, S. S., Chen, C. H., Liu, G. S., Tai, M. H., Wang, J. S., Wu, J. C., Kung, M. L., Chan, E. C., and Liu, L. F. (2012) Tumorigenesis and prognostic role of hepatoma-derived growth factor in human gliomas. Journal of neuro-oncology 107, 101-109
63. Yamamoto, S., Tomita, Y., Hoshida, Y., Morii, E., Yasuda, T., Doki, Y., Aozasa, K., Uyama, H., Nakamura, H., and Monden, M. (2007) Expression level of hepatoma-derived growth factor correlates with tumor recurrence of esophageal carcinoma. Annals of surgical oncology 14, 2141-2149
64. Lin, Y. W., Li, C. F., Chen, H. Y., Yen, C. Y., Lin, L. C., Huang, C. C., Huang, H. Y., Wu, P. C., Chen, C. H., Chen, S. C., and Tai, M. H. (2012) The expression and prognostic significance of hepatoma-derived growth factor in oral cancer. Oral oncology 48, 629-635
65. El-Serag, H. B. (2011) Hepatocellular carcinoma. The New England journal of medicine 365, 1118-1127
66. Zhou, Y., Zhou, N., Fang, W., and Huo, J. (2010) Overexpressed HDGF as an independent prognostic factor is involved in poor prognosis in Chinese patients with liver cancer. Diagnostic pathology 5, 58
67. Thiery, J. P., Acloque, H., Huang, R. Y., and Nieto, M. A. (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139, 871-890
68. Yang, J., Mani, S. A., Donaher, J. L., Ramaswamy, S., Itzykson, R. A., Come, C., Savagner, P., Gitelman, I., Richardson, A., and Weinberg, R. A. (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927-939
69. Hirohashi, S. (1998) Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. The American journal of pathology 153, 333-339
70. Sugimachi, K., Taguchi, K., Aishima, S., Tanaka, S., Shimada, M., Kajiyama, K., Sugimachi, K., and Tsuneyoshi, M. (2001) Altered expression of beta-catenin without genetic mutation in intrahepatic cholangiocarcinoma. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc 14, 900-905
71. Mendez, M. G., Kojima, S., and Goldman, R. D. (2010) Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 24, 1838-1851
72. Gallitzendoerfer, R., Abouzied, M. M., Hartmann, D., Dobrowolski, R., Gieselmann, V., and Franken, S. (2008) Hepatoma-derived growth factor (HDGF) is dispensable for normal mouse development. Developmental dynamics : an official publication of the American Association of Anatomists 237, 1875-1885
73. Yen, C. H., Lu, Y. C., Li, C. H., Lee, C. M., Chen, C. Y., Cheng, M. Y., Huang, S. F., Chen, K. F., Cheng, A. L., Liao, L. Y., Lee, Y. H., and Chen, Y. M. (2012) Functional characterization of glycine N-methyltransferase and its interactive protein DEPDC6/DEPTOR in hepatocellular carcinoma. Molecular medicine 18, 286-296
74. Sasaki, Y., Negishi, H., Idogawa, M., Yokota, I., Koyama, R., Kusano, M., Suzuki, H., Fujita, M., Maruyama, R., Toyota, M., Saito, T., and Tokino, T. (2011) p53 negatively regulates the hepatoma growth factor HDGF. Cancer research 71, 7038-7047
75. El-Serag, H. B., and Rudolph, K. L. (2007) Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132, 2557-2576
76. Davis, G. L., Dempster, J., Meler, J. D., Orr, D. W., Walberg, M. W., Brown, B., Berger, B. D., O'Connor, J. K., and Goldstein, R. M. (2008) Hepatocellular carcinoma: management of an increasingly common problem. Proceedings 21, 266-280
77. El-Serag, H. B., and Mason, A. C. (1999) Rising incidence of hepatocellular carcinoma in the United States. The New England journal of medicine 340, 745-750
78. Ozturk, M. (1999) Genetic aspects of hepatocellular carcinogenesis. Seminars in liver disease 19, 235-242
79. Azechi, H., Nishida, N., Fukuda, Y., Nishimura, T., Minata, M., Katsuma, H., Kuno, M., Ito, T., Komeda, T., Kita, R., Takahashi, R., and Nakao, K. (2001) Disruption of the p16/cyclin D1/retinoblastoma protein pathway in the majority of human hepatocellular carcinomas. Oncology 60, 346-354
80. Chen, Y. M., Shiu, J. Y., Tzeng, S. J., Shih, L. S., Chen, Y. J., Lui, W. Y., and Chen, P. H. (1998) Characterization of glycine-N-methyltransferase-gene expression in human hepatocellular carcinoma. International journal of cancer. Journal international du cancer 75, 787-793
81. Yang, J., and Everett, A. D. (2007) Hepatoma-derived growth factor binds DNA through the N-terminal PWWP domain. BMC molecular biology 8, 101
82. Clevers, H. (2006) Wnt/beta-catenin signaling in development and disease. Cell 127, 469-480
83. Ding, S. L., Yang, Z. W., Wang, J., Zhang, X. L., Chen, X. M., and Lu, F. M. (2015) Integrative analysis of aberrant Wnt signaling in hepatitis B virus-related hepatocellular carcinoma. World journal of gastroenterology : WJG 21, 6317-6328
84. Dhillon, A. S., Hagan, S., Rath, O., and Kolch, W. (2007) MAP kinase signalling pathways in cancer. Oncogene 26, 3279-3290
85. Bressac, B., Galvin, K. M., Liang, T. J., Isselbacher, K. J., Wands, J. R., and Ozturk, M. (1990) Abnormal structure and expression of p53 gene in human hepatocellular carcinoma. Proceedings of the National Academy of Sciences of the United States of America 87, 1973-1977
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code