Responsive image
博碩士論文 etd-0522115-133151 詳細資訊
Title page for etd-0522115-133151
論文名稱
Title
利用核磁共振研究離子、水、高分子擁擠劑和磁共振造影劑之間的交互作用
Nuclear magnetic resonance investigation of the interactions between ions, water, macromolecular crowder and magnetic resonance imaging contrast agent
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
146
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-29
繳交日期
Date of Submission
2015-06-22
關鍵字
Keywords
離子效應、水溶液中的氫鍵、擁擠效應、造影劑、聚乙二醇
Polyethylene glycol (PEG), Hydrogen-bonding in aqueous solutions, Ion effect, Crowding effect, Contrast agent
統計
Statistics
本論文已被瀏覽 5702 次,被下載 689
The thesis/dissertation has been browsed 5702 times, has been downloaded 689 times.
中文摘要
Magnetic resonance imaging (MRI)是當今最有用且不具侵入性的檢測技術之一,不論是在醫療診斷、食品科學和材料研究上,都有豐富的成果。現在常規的MRI造影劑理論中,假定MRI造影劑分子是處於稀薄、小分子組成的溶液體系之中,但在許多真實狀況下此理論可能不完全適用,如典型的生物體內環境是一個高度擁擠且充滿著各類大小分子和離子的體系,MRI造影劑的性能可能顯著地被分子和離子所影響。
在先前的工作中,我們研究了各類型常見高分子擁擠劑對於造影劑之鬆弛效能影響。在本工作中,藉由量測在擁擠環境下各離子濃度溶液的水分子及離子之縱向鬆弛速率(R1),橫向鬆弛速率(R2)和化學移位(CS)探討了離子效應在擁擠環境下對於造影劑的效果影響。我們使用了商用造影劑Dotarem(目前醫學診斷中最常用的MRI造影劑)、PEG作為擁擠劑和KCl, NaCl, LiCl, MgCl2, CaCl2, KI 作為離子來源(這些離子於生物體內佔較多數),透過LSNMR200MHz、LSNMR500MHz、變場式核磁共振儀 ( NMRD)、SSNMR 500MHz來探討溶液體系下各分子、離子間的交互作用力。
在實驗結果上,這些離子產生之離子效應不僅影響了水分子動態也造成了結構變化,在鬆弛速率的測量結果中,這些離子皆影響了水分子的動態,尤其是,Mg2+, Ca2+影響水分子動態的程度高於其他陽離子。透過化學位移的測量,可發現在各鹽離子溶液中添入擁擠劑,會使其化學位移變化趨勢加大。值得注意的是 MgCl2和其他離子趨勢相反,是隨濃度上升而化學位移上升,顯示著至少有兩種以上之因素影響著溶液結構變化。23Na NMR和NMRD結果也讓我們獲得一些不同的動態和結構資訊。藉由探討擁擠環境下離子效應對於造影劑分子的鬆弛機制,建立此系統之微觀圖像,增加MRI影像對比度判定之精準度。
Abstract
Magnetic resonance imaging (MRI) is one of the mostly useful non-invasive techniques in medical diagnosis, food science and materials research. The conventional theory of MRI contrast agents, assuming that they are located in a dilute, small molecular solution, gives good approximation in many situations but may fail in real biological systems because it is well-known that a typical organism is a highly crowded environment full of large and small molecules and ions. The performance of MRI contrast agent may be significantly altered by crowders and ions.
In previous work, we have studied the influence of macromolecular crowders on relaxivity of MRI contrast agents. The present study offers the first study on the influence of ions on macromolecular crowding effect on MRI contrast agents by measuring the longitudinal relaxation rate (R1), transverse relaxation rate (R2) and chemical shift (CS) of water and ion as a function of the concentration of ions in the solution system comprising commercial MRI contrast agent Dotarem (the mostly used MRI contrast agent in medical diagnosis), polyethylene glycol (PEG) as crowder and KCl, NaCl, LiCl, MgCl2 CaCl2, KI as ion source (these ions are most common in organisms). Through LSNMR 200 MHz, 500 MHz, NMRD, SSNMR 500 MHz to explore different kinds of interactions between molecules and ions in the solution systems.
From the results, it is found that the ion effect not only affects the dynamics of water molecules, but also the structures of the water-water, water-ion and water-PEG clusters. From the relaxation rates, we find that these ions affect the dynamics of the water molecule, especially Mg2+, Ca2+. The influence of both these two ions is higher than the rest. Through the measurement of chemical shift, we find that when the crowding agent is added in the ion solution, it increases the tendency of change of chemical shift. It is worth to note that the tendency of MgCl2 is opposite to other salt ions. Increasing nonlinearly with the concentration of MgCl2, water proton chemical shift and relaxation rates show that at least two or more factors affecting the changes in the systems. The results of 23Na NMR and NMRD provide us supplementary information on the dynamics and structure of clusters involving water molecules. These results demonstrate the significant effect of the ions under crowding environment on the relaxivity of MRI contrast agent and indicate that a molecular level understanding of the relaxation mechanism of MRI contrast agent in such system helps build the microscopic picture of MRI contrast generation and increases the accuracy of the MRI contrast determination of the image.
目次 Table of Contents
目錄
摘要 iii
Abstract iv
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
第二章 擁擠和侷限效應 4
2.1擁擠和侷限效應 4
2.2熱力學觀點解釋擁擠和侷限 6
2.3擁擠效應文獻回顧 12
第三章 溶液離子效應 17
3.1 水溶液鹽離子效應與蛋白質 17
3.2 霍夫梅斯特鹽離子序列 Hofmeister Series 20
3.3 水合離子半徑、水合交換速率 21
3.4 構築離子和解構離子 25
3.5 高分子與離子間交互作用力 27
第四章 磁共振造影劑與核磁共振原理介紹 32
4.1核磁共振簡介 32
4.2 核磁共振鬆弛 35
4.2.1 縱向鬆弛(Longitudinal relaxation) 35
4.2.2 橫向鬆弛(Transverse relaxation) 37
4.2.3 NMRD鬆弛速率隨磁場變化 39
4.2.4 MRI基礎原理 41
4.3商用造影劑 45
4.4.2 外層水質子鬆弛 49
4.4.3 內外層水分子間的交換機制 50
第五章 實驗部分 52
5.1 實驗藥品 52
5.1.1 PEG (Polyethylene glycol) 52
5.1.2 Dotarem (Gd-DOTA) 53
5.1.3 鹽離子之選擇 54
5.1.4 DSS 55
5.2 樣品製備 55
5.2.1 擁擠試劑製備 55
5.2.2 Dotarem製備 56
5.2.3 鹽離子 製備 56
5.2.4 溶劑製備 61
5.3儀器實驗配製 61
5.3.1 鬆弛和化學位移實驗 61
5.3.2 影像實驗 62
5.3.3 NMRD實驗 63
5.4儀器設備 63
5.5儀器條件 63
5.6 分子動力學模擬 65
第六章 結果與討論 66
6.1不同鹽離子、PEG 6k濃度的水溶液1H 一維光譜 66
6.2不同鹽離子、擁擠劑、造影劑濃度的水溶液R1、R2測量 72
6.3在擁擠環境下不同鹽離子、造影劑和R1測量與關係比較 85
6.4 NaCl水溶液中,23Na化學位移、 R1、R2測量 91
6.5分子動力學模擬 95
6.6 1H micro-MRI實驗 112
6.7 1H NMRD實驗 117
第七章 結論 123
參考文獻 125
參考文獻 References
參考文獻
1. Zhou Z & Lu ZR (2013) Gadolinium‐based contrast agents for magnetic resonance cancer imaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 5(1):1-18.
2. Caravan P, Ellison JJ, McMurry TJ, & Lauffer RB (1999) Gadolinium(III) Chelates as MRI Contrast Agents:  Structure, Dynamics, and Applications. Chemical Reviews 99(9):2293-2352.
3. Giedd JN, et al. (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nature neuroscience 2(10):861-863.
4. Kim RJ, et al. (1999) Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100(19):1992-2002.
5. Biswal B, Yetkin FZ, Haughton VM, & Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic resonance in medicine 34(4):537-541.
6. Rivas G, Ferrone F, & Herzfeld J (2004) Life in a crowded world pp 23-27.
7. Minton AP & Wilf J (1981) Effect of Macromolecular Crowding Upon the Structure and Function of an Enzyme - Glyceraldehyde-3-Phosphate Dehydrogenase. Biochemistry-Us 20(17):4821-4826.
8. Fulton AB (1982) How Crowded Is the Cytoplasm. Cell 30(2):345-347.
9. Minton AP (1983) The Effect of Volume Occupancy Upon the Thermodynamic Activity of Proteins - Some Biochemical Consequences. Mol Cell Biochem 55(2):119-140.
10. Hall D & Minton AP (2003) Macromolecular crowding: qualitative and semiquantitative successes, quantitative challenges. Bba-Proteins Proteom 1649(2):127-139.
11. Zhou HX (2004) Loops, linkages, rings, catenanes, cages, and crowders: Entropy-based strategies for stabilizing proteins. Accounts Chem Res 37(2):123-130.
12. Zhou HX (2004) Polymer models of protein stability, folding, and interactions. Biochemistry-Us 43(8):2141-2154.
13. Zimmerman SB & Harrison B (1987) Macromolecular crowding increases binding of DNA polymerase to DNA: an adaptive effect. Proceedings of the National Academy of Sciences 84(7):1871-1875.
14. Munishkina LA, Cooper EM, Uversky VN, & Fink AL (2004) The effect of macromolecular crowding on protein aggregation and amyloid fibril formation. J Mol Recognit 17(5):456-464.
15. Charlton LM, et al. (2008) Residue-Level Interrogation of Macromolecular Crowding Effects on Protein Stability. J Am Chem Soc 130(21):6826-6830.
16. Zhang D-L, Wu L-J, Chen J, & Liang Y (2012) Effects of macromolecular crowding on the structural stability of human α-lactalbumin. Acta Biochimica et Biophysica Sinica 44(8):703-711.
17. Derham BK & Harding JJ (2006) The effect of the presence of globular proteins and elongated polymers on enzyme activity. Bba-Proteins Proteom 1764(6):1000-1006.
18. Zhou HX (2013) Polymer crowders and protein crowders act similarly on protein folding stability. FEBS Letters 587(5):394-397.
19. Minton AP (2001) The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J. Biol. Chem. 276(14):10577-10580.
20. Minton AP (2006) How can biochemical reactions within cells differ from those in test tubes? J Cell Sci 119(14):2863-2869.
21. Zhou HX, Rivas GN, & Minton AP (2008) Macromolecular crowding and confinement: Biochemical, biophysical, and potential physiological consequences. Annu Rev Biophys 37:375-397.
22. Aisenbrey C, Bechinger B, & Grobner G (2008) Macromolecular crowding at membrane interfaces: adsorption and alignment of membrane peptides. Journal of molecular biology 375(2):376-385.
23. Denesyuk NA & Thirumalai D (2011) Crowding promotes the switch from hairpin to pseudoknot conformation in human telomerase RNA. Journal of the American Chemical Society 133(31):11858-11861.
24. Kilburn D, Roh JH, Guo L, Briber RM, & Woodson SA (2010) Molecular crowding stabilizes folded RNA structure by the excluded volume effect. Journal of the American Chemical Society 132(25):8690-8696.
25. Nakano S-i, Karimata HT, Kitagawa Y, & Sugimoto N (2009) Facilitation of RNA enzyme activity in the molecular crowding media of cosolutes. Journal of the American Chemical Society 131(46):16881-16888.
26. Knowles D, LaCroix AS, Deines NF, Shkel I, & Record MT (2011) Separation of preferential interaction and excluded volume effects on DNA duplex and hairpin stability. Proceedings of the National Academy of Sciences 108(31):12699-12704.
27. Dupuis NF, Holmstrom ED, & Nesbitt DJ (2014) Molecular-crowding effects on single-molecule RNA folding/unfolding thermodynamics and kinetics. Proceedings of the National Academy of Sciences 111(23):8464-8469.
28. May A & Huehns ER (1975) The Concentration Dependence of the Oxygen Affinity of Haemoglobin S. Br. J. Haematol. 30(3):317-335.
29. Minton AP (1981) Excluded Volume as a Determinant of Macromolecular Structure and Reactivity. Abstr Pap Am Chem S 182(Aug):32-&.
30. Fulton AB (1982) How crowded is the cytoplasm? Cell 30(2):345-347.
31. Minton A (1983) The effect of volume occupancy upon the thermodynamic activity of proteins: some biochemical consequences. Mol Cell Biochem 55(2):119-140.
32. Minton AP (1992) Confinement as a Determinant of Macromolecular Structure and Reactivity. Biophys J 63(4):1090-1100.
33. Zimmerman SB & Minton AP (1993) Macromolecular Crowding: Biochemical, Biophysical, and Physiological Consequences. Annu. Rev. Biophys. Biomol. Struct. 22(1):27-65.
34. Murphy LD & Zimmerman SB (1994) Macromolecular crowding effects on the interaction of DNA with Escherichia coli DNA-binding proteins: a model for bacterial nucleoid stabilization. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression 1219(2):277-284.
35. Zimmerman SB & Murphy LD (1996) Macromolecular crowding and the mandatory condensation of DNA in bacteria. FEBS Lett. 390(3):245-248.
36. Zhou HX (2004) Protein folding and binding in confined spaces and in crowded solutions. Journal of Molecular Recognition 17(5):368-375.
37. Minton AP (2005) Models for excluded volume interaction between an unfolded protein and rigid macromolecular cosolutes: macromolecular crowding and protein stability revisited. Biophys J 88(2):971-985.
38. Minton AP (2005) Influence of macromolecular crowding upon the stability and state of association of proteins: predictions and observations. J Pharm Sci-Us 94(8):1668-1675.
39. Ai X, Zhou Z, Bai Y, & Choy WY (2006) 15N NMR spin relaxation dispersion study of the molecular crowding effects on protein folding under native conditions. J Am Chem Soc 128(12):3916-3917.
40. Cino EA, Karttunen M, & Choy W-Y (2012) Effects of molecular crowding on the dynamics of intrinsically disordered proteins. PLoS One 7(11):e49876.
41. Li CG, et al. (2008) Differential dynamical effects of macromolecular crowding on an intrinsically disordered protein and a globular protein: Implications for in-cell NMR spectroscopy. J Am Chem Soc 130(20):6310-+.
42. Charlton LM, et al. (2008) Residue-level interrogation of macromolecular crowding effects on protein stability. J Am Chem Soc 130(21):6826-6830.
43. Li C, Wang Y, & Pielak GJ (2009) Translational and rotational diffusion of a small globular protein under crowded conditions. J. Phys. Chem. B 113(40):13390-13392.
44. Wang Y, Li C, & Pielak GJ (2010) Effects of proteins on protein diffusion. Journal of the American Chemical Society 132(27):9392-9397.
45. Jensen KS, Winther JR, & Teilum K (2011) Millisecond Dynamics in Glutaredoxin during Catalytic Turnover Is Dependent on Substrate Binding and Absent in the Resting States. J Am Chem Soc 133(9):3034-3042.
46. Wang Y, Benton LA, Singh V, & Pielak GJ (2012) Disordered Protein Diffusion under Crowded Conditions. The Journal of Physical Chemistry Letters 3(18):2703-2706.
47. Wang Y, Sarkar M, Smith AE, Krois AS, & Pielak GJ (2012) Macromolecular crowding and protein stability. J Am Chem Soc 134(40):16614-16618.
48. Sarkar M, Lu J, & Pielak GJ (2014) Protein crowder charge and protein stability. Biochemistry-Us 53(10):1601-1606.
49. Hünefeld FL (1840) Der Chemismus in der thierischen Organisation; Physiologisch-chemische Untersuchungen der materiellen Veränderungen oder des Bildungslebens im thierischen Organismus, insbesondere des Blutbildungsprocesses, der Natur der Blutkörperchen und ihrer Kernchen; Ein Beitrag zur Physiologie und Heilmittellehre; Gekrönte Preisschrift (Brockhaus).
50. Hünefeld FL (1840) Der Chemismus in der thierischen Organisation... ein Beitrag zur Physiologie und Heilmittellehre, gekrönte Preisschrift verfasst und herausgegeben von Dr. FL Hünefeld (FA Brockhaus).
51. Reichert KB (1849) Beobachtungen über eine eiweissartige Substanz in Krystallform Archiv für Anatomie, Physiologie und Wissenschaftliche Medicin: 197-251. .
52. McPherson A (1991) A brief history of protein crystal growth. J. Cryst. Growth 110(1):1-10.
53. Budge S (1850) Niederrh. Ges. Natur Heilkunde 1.
54. Rankin DW, Mitzel N, & Morrison C (2013) Structural Methods in Molecular Inorganic Chemistry (John Wiley & Sons).
55. Hofmeister F (1888) Zur lehre von der wirkung der salze. Archiv für experimentelle Pathologie und Pharmakologie 25(1):1-30.
56. Debye P & Hückel E (1923) De la théorie des électrolytes. i. abaissement du point de congélation et phénomènes associés. Physikalische Zeitschrift 24(9):185-206.
57. Hertz H (1967) Microdynamic behaviour of liquids as studied by NMR relaxation times. Prog. Nucl. Magn. Reson. Spectrosc. 3:159-230.
58. Fister F & Hertz H (1967) O17‐NMR Study of Aqueous Electrolyte and Non‐electrolyte Solutions. Berichte der Bunsengesellschaft für physikalische Chemie 71(9‐10):1032-1040.
59. Engel G & Hertz H (1968) On the negative hydration. A nuclear magnetic relaxation study. Berichte der Bunsengesellschaft für physikalische Chemie 72(7):808-834.
60. Hertz H, Tutsch R, & Versmold H (1971) Molecular motion and structure around the hydrated ions Li+ and Al3+. Berichte der Bunsengesellschaft für physikalische Chemie 75(11):1177-1191.
61. Hertz H & Rädle C (1973) The Orientation of the Water Molecules in the Hydration Sphere of F− and in the Hydrophobic Hydration Sphere. Berichte der Bunsengesellschaft für physikalische Chemie 77(7):521-531.
62. Mulder C, Schriever J, & Leyte J (1983) Nuclear magnetic relaxation of water nuclei. A study on anisotropic behavior. The Journal of Physical Chemistry 87(13):2336-2342.
63. Struis R, De Bleijser J, & Leyte J (1987) Dynamic behavior and some of the molecular properties of water molecules in pure water and in magnesium chloride solutions. J Phys Chem-Us 91(6):1639-1645.
64. Shimizu A & Taniguchi Y (1990) NMR Studies on the Rotational Motion of Coordinated D2O Molecules in MBr (M= Li+, Na+, K+, Cs+) Dilute Aqueous Solutions. Bull. Chem. Soc. Jpn. 63(6):1572-1577.
65. Sachs JN & Woolf TB (2003) Understanding the Hofmeister effect in interactions between chaotropic anions and lipid bilayers: molecular dynamics simulations. Journal of the American Chemical Society 125(29):8742-8743.
66. Zhou HX (2005) Interactions of macromolecules with salt ions: an electrostatic theory for the Hofmeister effect. Proteins: Structure, Function, and Bioinformatics 61(1):69-78.
67. Cacace M, Landau E, & Ramsden J (1997) The Hofmeister series: salt and solvent effects on interfacial phenomena. Quarterly reviews of biophysics 30(03):241-277.
68. Collins KD & Washabaugh MW (1985) The Hofmeister effect and the behaviour of water at interfaces. Quarterly reviews of biophysics 18(04):323-422.
69. Kunz W, Bellissent-Fune M-C, & Calmettes P (1995) Structure of water and ionic hydration. Bioelectrochemistry: General Introduction, (Springer), pp 132-210.
70. Conway B & Ayranci E (1999) Effective ionic radii and hydration volumes for evaluation of solution properties and ionic adsorption. Journal of solution chemistry 28(3):163-192.
71. Dove PM & Nix CJ (1997) The influence of the alkaline earth cations, magnesium, calcium, and barium on the dissolution kinetics of quartz. Geochim. Cosmochim. Acta 61(16):3329-3340.
72. Kinrade SD (1996) Oxygen-17 NMR study of aqueous potassium silicates. The Journal of Physical Chemistry 100(12):4760-4764.
73. Conway BE (1981) Ionic hydration in chemistry and biophysics (Elsevier Science Ltd).
74. Burgess J (1999) Ions in solution: basic principles of chemical interactions (Elsevier).
75. Chellan P & Sadler PJ (2015) The elements of life and medicines. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 373(2037):20140182.
76. Marcus Y (2009) Effect of ions on the structure of water: structure making and breaking. Chemical reviews 109(3):1346-1370.
77. Ben-Naim A (1975) Structure-breaking and structure-promoting processes in aqueous solutions. The Journal of Physical Chemistry 79(13):1268-1274.
78. Ben-Naim A (1978) A simple model for demonstrating the relation between solubility, hydrophobic interaction, and structural changes in the solvent. The Journal of Physical Chemistry 82(8):874-885.
79. Marcus Y & Ben‐Naim A (1985) A study of the structure of water and its dependence on solutes, based on the isotope effects on solvation thermodynamics in water. The Journal of chemical physics 83(9):4744-4759.
80. Mähler J & Persson I (2011) A study of the hydration of the alkali metal ions in aqueous solution. Inorg Chem 51(1):425-438.
81. Zhang Y & Cremer PS (2006) Interactions between macromolecules and ions: the Hofmeister series. Current opinion in chemical biology 10(6):658-663.
82. Zhang Y, Furyk S, Bergbreiter DE, & Cremer PS (2005) Specific ion effects on the water solubility of macromolecules: PNIPAM and the Hofmeister series. Journal of the American Chemical Society 127(41):14505-14510.
83. Aroti A, Leontidis E, Maltseva E, & Brezesinski G (2004) Effects of Hofmeister anions on DPPC Langmuir monolayers at the air-water interface. The Journal of Physical Chemistry B 108(39):15238-15245.
84. Schnell B, Schurhammer R, & Wipff G (2004) Distribution of hydrophobic ions and their counterions at an aqueous liquid-liquid interface: a molecular dynamics investigation. The Journal of Physical Chemistry B 108(7):2285-2294.
85. Jungwirth P & Tobias DJ (2002) Ions at the air/water interface. The Journal of Physical Chemistry B 106(25):6361-6373.
86. Jungwirth P & Tobias DJ (2001) Molecular structure of salt solutions: a new view of the interface with implications for heterogeneous atmospheric chemistry. The Journal of Physical Chemistry B 105(43):10468-10472.
87. Jungwirth P & Tobias DJ (2006) Specific ion effects at the air/water interface. Chemical reviews 106(4):1259-1281.
88. Vrbka L, Jungwirth P, Bauduin P, Touraud D, & Kunz W (2006) Specific ion effects at protein surfaces: a molecular dynamics study of bovine pancreatic trypsin inhibitor and horseradish peroxidase in selected salt solutions. The journal of physical chemistry B 110(13):7036-7043.
89. Keeler J (2013) Understanding NMR Spectroscopy (Wiley).
90. Cavanagh J, Fairbrother WJ, Palmer AG, & Skelton NJ (1995) Protein NMR Spectroscopy: Principles and Practice (Elsevier Science).
91. Cornell B, Pope J, & Troup G (1974) A pulsed NMR study of D 2 O bound to 1, 2 dipalmitoyl phosphatidylcholine. Chem. Phys. Lipids 13(2):183-201.
92. Vold RL, Waugh JS, Klein MP, & Phelps DE (1968) Measurement of Spin Relaxation in Complex Systems. The Journal of Chemical Physics 48(8):3831-3832.
93. Levitt MH (2008) Spin Dynamics: Basics of Nuclear Magnetic Resonance (Wiley).
94. Meiboom S & Gill D (1958) Modified Spin‐Echo Method for Measuring Nuclear Relaxation Times. Rev Sci Instrum 29(8):688-691.
95. Stapf S, Kimmich R, & Seitter RO (1995) Proton and Deuteron Field-Cycling Nmr Relaxometry of Liquids in Porous Glasses - Evidence for Levy-Walk Statistics. Phys Rev Lett 75(15):2855-2858.
96. Kimmich R & Anoardo E (2004) Field-cycling NMR relaxometry. Progress in Nuclear Magnetic Resonance Spectroscopy 44(3):257-320.
97. Anoardo E, Galli G, & Ferrante G (2001) Fast-field-cycling NMR: applications and instrumentation. Appl. Magn. Reson. 20(3):365-404.
98. Han G, et al. (2014) Hydration of the oxygen-evolving complex of photosystem II probed in the dark-stable S 1 state using proton NMR dispersion profiles. PCCP 16(24):11924-11935.
99. Merbach AS, Helm L, & Tóth É (2013) The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging (Wiley).
100. Flacke S, et al. (2001) Novel MRI Contrast Agent for Molecular Imaging of Fibrin: Implications for Detecting Vulnerable Plaques. Circulation 104(11):1280-1285.
101. Zhang S, Winter P, Wu K, & Sherry AD (2001) A Novel Europium(III)-Based MRI Contrast Agent. J Am Chem Soc 123(7):1517-1518.
102. Doan B-T, Meme S, & Beloeil J-C (2013) General Principles of MRI. The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, Second Edition:1-23.
103. Runge VM, et al. (1984) Intravascular Contrast Agents Suitable for Magnetic-Resonance Imaging. Radiology 153(1):171-176.
104. Lauffer RB (1987) Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design. Chem Rev 87(5):901-927.
105. Freed JH (1978) Dynamic Effects of Pair Correlation-Functions on Spin Relaxation by Translational Diffusion in Liquids .2. Finite Jumps and Independent T1 Processes. J Chem Phys 68(9):4034-4037.
106. Luz Z & Meiboom S (1964) Proton relaxation in dilute solutions of cobalt (II) and nickel (II) ions in methanol and the rate of methanol exchange of the solvation sphere. The Journal of Chemical Physics 40(9):2686-2692.
107. Swift TJ & Connick RE (1962) NMR‐Relaxation Mechanisms of O17 in Aqueous Solutions of Paramagnetic Cations and the Lifetime of Water Molecules in the First Coordination Sphere. The Journal of Chemical Physics 37(2):307-320.
108. Micskei K, Helm L, Brucher E, & Merbach AE (1993) Oxygen-17 NMR study of water exchange on gadolinium polyaminopolyacetates [Gd(DTPA)(H2O)]2- and [Gd(DOTA)(H2O)]- related to NMR imaging. Inorg Chem 32(18):3844-3850.
109. Michel BE & Kaufmann MR (1973) The osmotic potential of polyethylene glycol 6000. Plant physiology 51(5):914-916.
110. Kestin J, Sokolov M, & Wakeham WA (1978) Viscosity of liquid water in the range− 8 C to 150 C. Journal of Physical and Chemical Reference Data 7(3):941-948.
111. Abdulagatov IM, Zeinalova AB, & Azizov ND (2006) Experimental viscosity B-coefficients of aqueous LiCl solutions. Journal of molecular liquids 126(1):75-88.
112. Lencka M, Anderko A, Sanders S, & Young R (1998) Modeling viscosity of multicomponent electrolyte solutions. International journal of thermophysics 19(2):367-378.
113. Endom L, Hertz H, Thül B, & Zeidler M (1967) A Microdynamic Model of Electrolyte Solutions as Derived from Nuclear Magnetic Relaxation and Self‐Diffusion Data. Berichte der Bunsengesellschaft für physikalische Chemie 71(9‐10):1008-1031.
114. McCall DW & Douglass DC (1965) The effect of ions on the self-diffusion of water. I. Concentration dependence. The Journal of Physical Chemistry 69(6):2001-2011.
115. Hertz H (1971) Self‐Diffusion in Liquids. Berichte der Bunsengesellschaft für physikalische Chemie 75(3‐4):183-194.
116. Phillips JC, et al. (2005) Scalable molecular dynamics with NAMD. Journal of computational chemistry 26(16):1781-1802.
117. Theroretical and computational biophysics group. (2005) Scalable molecular dynamics with NAMD. (university of illinois).
118. Zoete V, Cuendet MA, Grosdidier A, & Michielin O (2011) SwissParam: a fast force field generation tool for small organic molecules. Journal of computational chemistry 32(11):2359-2368.
119. Hayashi S & Hayamizu K (1991) Chemical shift standards in high-resolution solid-state NMR (1) 13 C, 29 Si, and 1 H nuclei. Bull. Chem. Soc. Jpn. 64(2):685-687.
120. Wishart DS, et al. (1995) 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J. Biomol. NMR 6(2):135-140.
121. Lam Y-F & Kotowycz G (1977) Caution concerning the use of sodium 2, 2-dimethyl-2-silapentane-5-sulfonate (DSS) as a reference for proton NMR chemical shift studies. FEBS Lett. 78(2):181-183.
122. Pal S & Kundu T (2013) Stability Analysis and Frontier Orbital Study of Different Glycol and Water Complex. ISRN Physical Chemistry 2013.
123. Martin F & Zipse H (2005) Charge distribution in the water molecule—a comparison of methods. Journal of computational chemistry 26(1):97-105.
124. Lüsse S & Arnold K (1996) The interaction of poly (ethylene glycol) with water studied by 1H and 2H NMR relaxation time measurements. Macromolecules 29(12):4251-4257.
125. Mäemets V & Koppel I (1996) 17 O and 1 H chemical shifts of water in solutions of some ammonium salts: evaluation of the anionic effect on the 17O and 1H chemical shifts of water in aqueous solutions of mineral acids. Journal of the Chemical Society, Faraday Transactions 92(19):3533-3538.
126. Mäemets V & Koppel I (1997) 17 O and 1 H NMR chemical shifts of hydroxide and hydronium ion in aqueous solutions of strong electrolytes. Journal of the Chemical Society, Faraday Transactions 93(8):1539-1542.
127. Mäemets V & Koppel I (1998) Effect of ions on the 17 O and 1 H NMR chemical shifts of water. Journal of the Chemical Society, Faraday Transactions 94(21):3261-3269.
128. Conte P (2014) Effects of ions on water structure: a low‐field 1H T1 NMR relaxometry approach. Magn. Reson. Chem.
129. Giese K, Kaatze U, & Pottel R (1970) Permittivity and dielectric and proton magnetic relaxation of aqueous solutions of the alkali halides. The Journal of Physical Chemistry 74(21):3718-3725.
130. Eisenstadt M & Friedman HL (1966) Nuclear Magnetic Relaxation in Ionic Solution. I. Relaxation of 23Na in Aqueous Solutions of NaCl and NaClO4. The Journal of Chemical Physics 44(4):1407-1415.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code