Responsive image
博碩士論文 etd-0522117-000509 詳細資訊
Title page for etd-0522117-000509
論文名稱
Title
抗發炎海洋衍生物在動脈粥狀硬化之作用
The effects of anti-inflammatory marine-derived compound on atherosclerosis
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
133
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-01-20
繳交日期
Date of Submission
2017-06-22
關鍵字
Keywords
海洋化合物、粥狀動脈硬化、抗發炎反應、RAW 264.7 巨噬細胞、脂質油滴
RAW 264.7 macrophages, lipid droplets, anti-inflammatory, marine compound, atherosclerosis
統計
Statistics
本論文已被瀏覽 5767 次,被下載 0
The thesis/dissertation has been browsed 5767 times, has been downloaded 0 times.
中文摘要
動脈粥狀硬化被認為是一種發炎反應的疾病且臨床醫學有許多藥物可以用來它。然而,臨床上用於抗動脈硬化的藥物有許多副作用如simvastatin。最近許多研究顯示獨特的海洋化合物被分離出來且具有多樣的生物活性。我們之前的研究就發現一個austrasulfone海洋化合物的合成前驅物dihydroaustrasulfone alcohol (簡稱WA-25),在離體實驗中具有抗動脈硬化的效果,然而,這其中的詳細機轉尚不清楚。因此,為了釐清WA-25 的抗動脈硬化的機轉,我們運用RAW264.7巨噬細胞離體模組實驗來評估WA-25的抗動脈硬化的效果。實驗結果發現,WA-25能夠有意義的降低受到LPS刺激後的RAW264.7細胞所釋放的發炎前驅蛋白質:誘發性一氧化氮合成酶 (iNOS) 和環氧合酶 (COX-2)的表現。 相對於WA-25的效果,simvastatin 增加COX-2發炎前驅蛋白質的表現。此外,WA-25能阻礙泡沫細胞的形成,也能增加細胞內的lysosome 和cAMP訊號路徑。我們也觀察到WA-25 和simvastatin可以增加受到LPS刺激後的RAW264.7細胞內的transforming growth factor β1 (TGF-β1)表現,而這個抗動脈硬化的效果可以藉由阻斷TGF- β1信號傳遞所破壞。此外, WA-25的作用可能透過增加酯質分解而非改變酯質排出作用。綜合而論,實驗資料顯示WA-25具有的抗發炎效果,未來有潛能開發成為抗動脈硬化的藥物。
Abstract
Atherosclerosis is an inflammatory disease that can be treated with medications in the clinic. Nonetheless, some anti-atherosclerotic drugs, such as simvastatin, used in clinically have several side effects. Recently, several unique marine compounds have reported to have various bioactivities. One of our previous studies revealed that dihydroaustrasulfone alcohol (WA-25), a synthetic precursor of the marine compound (austrasulfone), has anti-atherosclerotic effects in vivo. However, the detailed mechanisms remain unclear. Therefore, to clarify the mechanisms by which WA-25 exerts anti-atherosclerotic activity, we used RAW 264.7 macrophages as an in vitro model to evaluate the effects of WA-25. In lipopolysaccharide (LPS)-stimulated RAW 264.7 cells, WA-25 significantly inhibited the expression of the pro-inflammatory proteins, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). In contrast, simvastatin increased the COX-2 expression compared to that with WA-25. In addition, WA-25 inhibited foam cell formation and up-regulated the lysosomal and cyclic adenosine monophosphate (cAMP) signaling pathway. Moreover, transforming growth factor β1 (TGF-β1) was up-regulated by WA-25 and simvastatin in LPS-induced RAW 264.7 cells, and the promising anti-atherosclerotic effects of WA-25 were disrupted by blockade of TGF- β1 signaling. In addition, WA-25 might act by increasing lipolysis than by alteration of lipid export. Taken together, these data demonstrate that WA-25 may have potential as an anti-atherosclerotic drug with an anti-inflammatory effect.
目次 Table of Contents
Acknowledgment ii
Chinese abstract iii
English abstract iv
Table of contents v
List of figures vi
List of abbreviations viii

Introduction 01
Specific aim 28
Materials and methods 34
Results 41
Discussion 62
Conclusion 68
Future study 70
References 72
Appendix 99
參考文獻 References
1. Kloner RA and Speakman M. Erectile dysfunction and atherosclerosis. Curr Atheroscler Rep. 2002;4:397-401.
2. Charo IF and Taub R. Anti-inflammatory therapeutics for the treatment of atherosclerosis. Nat Rev Drug Discov. 2011;10:365-76.
3. Beckman JA, Creager MA and Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. Jama. 2002;287:2570-2581.
4. Berenson GS, Srinivasan SR, Bao W, Newman WP, Tracy RE and Wattigney WA. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. New England journal of medicine. 1998;338:1650-1656.
5. Susic D. Hypertension, aging, and atherosclerosis: the endothelial interface. Medical clinics of north America. 1997;81:1231-1240.
6. Mercado C and Jaimes EA. Cigarette smoking as a risk factor for atherosclerosis and renal disease: novel pathogenic insights. Current hypertension reports. 2007;9:66-72.
7. Mizuno Y, Jacob RF and Mason RP. Inflammation and the development of atherosclerosis. Journal of atherosclerosis and thrombosis. 2011;18:351-8.
8. Wu BJ, Kathir K, Witting PK, Beck K, Choy K, Li C, Croft KD, Mori TA, Tanous D, Adams MR, Lau AK and Stocker R. Antioxidants protect from atherosclerosis by a heme oxygenase-1 pathway that is independent of free radical scavenging. J Exp Med. 2006;203:1117-27.
9. Ma KL, Ruan XZ, Powis SH, Moorhead JF and Varghese Z. Anti-atherosclerotic effects of sirolimus on human vascular smooth muscle cells. Am J Physiol Heart Circ Physiol. 2007;292:H2721-8.
10. Singh U and Jialal I. Oxidative stress and atherosclerosis. Pathophysiology. 2006;13:129-42.
11. Libby P. Inflammation in atherosclerosis. Nature. 2002;420:868-74.
12. Amarenco P, Lavallee PC, Labreuche J, Ducrocq G, Juliard JM, Feldman L, Cabrejo L, Meseguer E, Guidoux C, Adrai V, Ratani S, Kusmierek J, Lapergue B, Klein IF, Gongora-Rivera F, Jaramillo A, Mazighi M, Touboul PJ and Steg PG. Prevalence of coronary atherosclerosis in patients with cerebral infarction. Stroke. 2011;42:22-9.
13. Braunwald E. Shattuck lecture--cardiovascular medicine at the turn of the millennium: triumphs, concerns, and opportunities. The New England journal of medicine. 1997;337:1360-9.
14. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) Final Report. Circulation. 2002;106:3143.
15. Wu ML, Ho YC, Lin CY and Yet SF. Heme oxygenase-1 in inflammation and cardiovascular disease. Am J Cardiovasc Dis. 2011;1:150-8.
16. Jeng JS and Su TC. Epidemiological studies of cerebrovascular diseases and carotid atherosclerosis in Taiwan. Acta Neurol Taiwan. 2007;16:190-202.
17. Zedler S and Faist E. The impact of endogenous triggers on trauma-associated inflammation. Curr Opin Crit Care. 2006;12:595-601.
18. Mariathasan S and Monack DM. Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat Rev Immunol. 2007;7:31-40.
19. Choy CS, Hu CM, Chiu WT, Lam CS, Ting Y, Tsai SH and Wang TC. Suppression of lipopolysaccharide-induced of inducible nitric oxide synthase and cyclooxygenase-2 by Sanguis Draconis, a dragon's blood resin, in RAW 264.7 cells. J Ethnopharmacol. 2008;115:455-62.
20. Esposito E and Cuzzocrea S. The role of nitric oxide synthases in lung inflammation. Curr Opin Investig Drugs. 2007;8:899-909.
21. Murakami A and Ohigashi H. Targeting NOX, INOS and COX-2 in inflammatory cells: chemoprevention using food phytochemicals. Int J Cancer. 2007;121:2357-63.
22. Kleinert H, Boissel, J.P., Schwarz, P.M., and Förstermann, U. Regulation of the expression of nitric oxide synthase isoforms. In: Nitric Oxide: Biology and Pathobiology. New York, USA: Academic Press. 2000:105-128.
23. Förstermann U, Li, H., Schwarz, P.M., and Kleinert, H. NO synthesis and NOS regulation. In: Signal Transduction by Reactive Oxygen and Nitrogen Species. HJ Forman, J. 2003:119-154.
24. Forstermann U and Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33:829-37, 837a-837d.
25. Green LC, Tannenbaum SR and Goldman P. Nitrate synthesis in the germfree and conventional rat. Science. 1981;212:56-8.
26. Stuehr DJ and Marletta MA. Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proc Natl Acad Sci U S A. 1985;82:7738-42.
27. Marletta MA, Yoon PS, Iyengar R, Leaf CD and Wishnok JS. Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate. Biochemistry. 1988;27:8706-11.
28. Pautz A, Art J, Hahn S, Nowag S, Voss C and Kleinert H. Regulation of the expression of inducible nitric oxide synthase. Nitric oxide : biology and chemistry / official journal of the Nitric Oxide Society. 2010;23:75-93.
29. MacMicking J, Xie QW and Nathan C. Nitric oxide and macrophage function. Annual review of immunology. 1997;15:323-50.
30. Radomski MW, Palmer RM and Moncada S. The anti-aggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide. British journal of pharmacology. 1987;92:639-46.
31. Moncada S, Gryglewski R, Bunting S and Vane JR. An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature. 1976;263:663-5.
32. Pomerantz KB and Hajjar DP. Eicosanoids in regulation of arterial smooth muscle cell phenotype, proliferative capacity, and cholesterol metabolism. Arteriosclerosis. 1989;9:413-29.
33. Hajjar DP PK. Signal transduction in atherosclerosis: integration of cytokines and the eicosanoid network. Faseb J. 1992;6:2933-2941.
34. Hogg N KB, Joseph J, Stuck A, Parthasarathy S. . Inhibitionof low-density lipoprotein oxidation by nitric oxide. potential role in atherogenesis. FEBS Lett. 1993;334:170-174.
35. Gryglewski RJ KR, Traba-Janik E, Zembowicz A, Trybutec M. Interaction between NO donors and iloprost in human vascular smooth muscle, platelets and leukocytes. J Cardiovasc Pharmacol. 1989;14:S124–S128.
36. Baker CS, Hall RJ, Evans TJ, Pomerance A, Maclouf J, Creminon C, Yacoub MH and Polak JM. Cyclooxygenase-2 is widely expressed in atherosclerotic lesions affecting native and transplanted human coronary arteries and colocalizes with inducible nitric oxide synthase and nitrotyrosine particularly in macrophages. Arteriosclerosis, thrombosis, and vascular biology. 1999;19:646-655.
37. Herschman HR. Prostaglandin synthase 2. Biochim Biophys Acta. 1996;1299:125-40.
38. Ross R. Atherosclerosis--an inflammatory disease. The New England journal of medicine. 1999;340:115-26.
39. Libby P. Current concepts of the pathogenesis of the acute coronary syndromes. Circulation. 2001;104:365-72.
40. Athyros VG, Kakafika AI, Karagiannis A and Mikhailidis DP. Do we need to consider inflammatory markers when we treat atherosclerotic disease? Atherosclerosis. 2008;200:1-12.
41. Choudhury RP and Leyva F. C-Reactive protein, serum amyloid A protein, and coronary events. Circulation. 1999;100:e65-6.
42. Bermudez EA, Rifai N, Buring J, Manson JE and Ridker PM. Interrelationships among circulating interleukin-6, C-reactive protein, and traditional cardiovascular risk factors in women. Arteriosclerosis, thrombosis, and vascular biology. 2002;22:1668-73.
43. Ridker PM, Rifai N, Stampfer MJ and Hennekens CH. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation. 2000;101:1767-72.
44. Schonbeck U, Varo N, Libby P, Buring J and Ridker PM. Soluble CD40L and cardiovascular risk in women. Circulation. 2001;104:2266-8.
45. Ridker PM, Rifai N, Pfeffer M, Sacks F, Lepage S and Braunwald E. Elevation of tumor necrosis factor-alpha and increased risk of recurrent coronary events after myocardial infarction. Circulation. 2000;101:2149-53.
46. Ridker PM, Buring JE and Rifai N. Soluble P-selectin and the risk of future cardiovascular events. Circulation. 2001;103:491-5.
47. Haim M, Tanne D, Boyko V, Reshef T, Goldbourt U, Leor J, Mekori YA and Behar S. Soluble intercellular adhesion molecule-1 and long-term risk of acute coronary events in patients with chronic coronary heart disease. Data from the Bezafibrate Infarction Prevention (BIP) Study. J Am Coll Cardiol. 2002;39:1133-8.
48. Ridker PM, Hennekens CH, Roitman-Johnson B, Stampfer MJ and Allen J. Plasma concentration of soluble intercellular adhesion molecule 1 and risks of future myocardial infarction in apparently healthy men. Lancet. 1998;351:88-92.
49. Brown DA, Breit SN, Buring J, Fairlie WD, Bauskin AR, Liu T and Ridker PM. Concentration in plasma of macrophage inhibitory cytokine-1 and risk of cardiovascular events in women: a nested case-control study. Lancet. 2002;359:2159-63.
50. Gimbrone MA, Jr. and Garcia-Cardena G. Vascular endothelium, hemodynamics, and the pathobiology of atherosclerosis. Cardiovasc Pathol. 2013;22:9-15.
51. Colin S, Chinetti-Gbaguidi G and Staels B. Macrophage phenotypes in atherosclerosis. Immunol Rev. 2014;262:153-66.
52. Qi M, Miyakawa H and Kuramitsu HK. Porphyromonas gingivalis induces murine macrophage foam cell formation. Microb Pathog. 2003;35:259-67.
53. Huang WC and Chen JS. Nitric oxide-independent lipid metabolism in RAW 264.7 macrophages loaded with oleic acid. Cell Biol Int. 2006;30:947-51.
54. Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W, Jr., Rosenfeld ME, Schwartz CJ, Wagner WD and Wissler RW. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation. 1995;92:1355-74.
55. Diaz MN, Frei B, Vita JA and Keaney JF, Jr. Antioxidants and atherosclerotic heart disease. The New England journal of medicine. 1997;337:408-16.
56. Bobryshev YV. Monocyte recruitment and foam cell formation in atherosclerosis. Micron. 2006;37:208-22.
57. Yu XH, Fu YC, Zhang DW, Yin K and Tang CK. Foam cells in atherosclerosis. Clin Chim Acta. 2013;424:245-52.
58. Kruth HS. Fluid-phase pinocytosis of LDL by macrophages: a novel target to reduce macrophage cholesterol accumulation in atherosclerotic lesions. Current pharmaceutical design. 2013;19:5865-72.
59. Collot-Teixeira S, Martin J, McDermott-Roe C, Poston R and McGregor JL. CD36 and macrophages in atherosclerosis. Cardiovascular research. 2007;75:468-77.
60. de Villiers WJ and Smart EJ. Macrophage scavenger receptors and foam cell formation. J Leukoc Biol. 1999;66:740-6.
61. Endemann G, Stanton LW, Madden KS, Bryant CM, White RT and Protter AA. CD36 is a receptor for oxidized low density lipoprotein. J Biol Chem. 1993;268:11811-6.
62. Stary HC, Chandler AB, Glagov S, Guyton JR, Insull W, Jr., Rosenfeld ME, Schaffer SA, Schwartz CJ, Wagner WD and Wissler RW. A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb. 1994;14:840-56.
63. Kovanen PT, Kaartinen M and Paavonen T. Infiltrates of activated mast cells at the site of coronary atheromatous erosion or rupture in myocardial infarction. Circulation. 1995;92:1084-8.
64. Hansson GK, Holm J and Jonasson L. Detection of activated T lymphocytes in the human atherosclerotic plaque. Am J Pathol. 1989;135:169-75.
65. van der Wal AC, Becker AE, van der Loos CM and Das PK. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation. 1994;89:36-44.
66. Frostegard J, Ulfgren AK, Nyberg P, Hedin U, Swedenborg J, Andersson U and Hansson GK. Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis. 1999;145:33-43.
67. Formato M, Farina M, Spirito R, Maggioni M, Guarino A, Cherchi GM, Biglioli P, Edelstein C and Scanu AM. Evidence for a proinflammatory and proteolytic environment in plaques from endarterectomy segments of human carotid arteries. Arteriosclerosis, thrombosis, and vascular biology. 2004;24:129-35.
68. Barish GD, Atkins AR, Downes M, Olson P, Chong LW, Nelson M, Zou Y, Hwang H, Kang H, Curtiss L, Evans RM and Lee CH. PPARdelta regulates multiple proinflammatory pathways to suppress atherosclerosis. Proc Natl Acad Sci U S A. 2008;105:4271-6.
69. Schonbeck U, Mach F, Sukhova GK, Murphy C, Bonnefoy JY, Fabunmi RP and Libby P. Regulation of matrix metalloproteinase expression in human vascular smooth muscle cells by T lymphocytes: a role for CD40 signaling in plaque rupture? Circulation research. 1997;81:448-54.
70. Hughes EN and August JT. Characterization of plasma membrane proteins identified by monoclonal antibodies. J Biol Chem. 1981;256:664-71.
71. Kima PE, Burleigh B and Andrews NW. Surface-targeted lysosomal membrane glycoprotein-1 (Lamp-1) enhances lysosome exocytosis and cell invasion by Trypanosoma cruzi. Cell Microbiol. 2000;2:477-86.
72. Eskelinen EL. Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Mol Aspects Med. 2006;27:495-502.
73. Agarwal AK, Srinivasan N, Godbole R, More SK, Budnar S, Gude RP and Kalraiya RD. Role of tumor cell surface lysosome-associated membrane protein-1 (LAMP1) and its associated carbohydrates in lung metastasis. J Cancer Res Clin Oncol. 2015;141:1563-74.
74. Sarafian V, Jadot M, Foidart JM, Letesson JJ, Van den Brule F, Castronovo V, Wattiaux R and Coninck SW. Expression of Lamp-1 and Lamp-2 and their interactions with galectin-3 in human tumor cells. Int J Cancer. 1998;75:105-11.
75. Andrejewski N, Punnonen EL, Guhde G, Tanaka Y, Lullmann-Rauch R, Hartmann D, von Figura K and Saftig P. Normal lysosomal morphology and function in LAMP-1-deficient mice. J Biol Chem. 1999;274:12692-701.
76. Sawada R, Jardine KA and Fukuda M. The genes of major lysosomal membrane glycoproteins lamp-1 and lamp-2. The 5'-flanking sequence of lamp-2 gene and comparison of exon organization in two genes. J Biol Chem. 1993;268:13010.
77. Laferte S and Dennis JW. Purification of two glycoproteins expressing beta 1-6 branched Asn-linked oligosaccharides from metastatic tumour cells. The Biochemical journal. 1989;259:569-76.
78. Acevedo-Schermerhorn C, Gray-Bablin J, Gama R and McCormick PJ. t-complex-associated embryonic surface antigen homologous to mLAMP-1. II. Expression and distribution analyses. Exp Cell Res. 1997;236:510-8.
79. Brouard S, Otterbein LE, Anrather J, Tobiasch E, Bach FH, Choi AM and Soares MP. Carbon monoxide generated by heme oxygenase 1 suppresses endothelial cell apoptosis. J Exp Med. 2000;192:1015-26.
80. Lee PJ, Alam J, Wiegand GW and Choi AM. Overexpression of heme oxygenase-1 in human pulmonary epithelial cells results in cell growth arrest and increased resistance to hyperoxia. Proc Natl Acad Sci U S A. 1996;93:10393-8.
81. Peyton KJ, Reyna SV, Chapman GB, Ensenat D, Liu XM, Wang H, Schafer AI and Durante W. Heme oxygenase-1-derived carbon monoxide is an autocrine inhibitor of vascular smooth muscle cell growth. Blood. 2002;99:4443-8.
82. Tobiasch E, Gunther L and Bach FH. Heme oxygenase-1 protects pancreatic beta cells from apoptosis caused by various stimuli. J Investig Med. 2001;49:566-71.
83. Willis D, Moore AR, Frederick R and Willoughby DA. Heme oxygenase: a novel target for the modulation of the inflammatory response. Nat Med. 1996;2:87-90.
84. Nath KA, Balla G, Vercellotti GM, Balla J, Jacob HS, Levitt MD and Rosenberg ME. Induction of heme oxygenase is a rapid, protective response in rhabdomyolysis in the rat. The Journal of clinical investigation. 1992;90:267-70.
85. Otterbein LE, Kolls JK, Mantell LL, Cook JL, Alam J and Choi AM. Exogenous administration of heme oxygenase-1 by gene transfer provides protection against hyperoxia-induced lung injury. The Journal of clinical investigation. 1999;103:1047-54.
86. Yet SF, Tian R, Layne MD, Wang ZY, Maemura K, Solovyeva M, Ith B, Melo LG, Zhang L, Ingwall JS, Dzau VJ, Lee ME and Perrella MA. Cardiac-specific expression of heme oxygenase-1 protects against ischemia and reperfusion injury in transgenic mice. Circulation research. 2001;89:168-73.
87. Minamino T, Christou H, Hsieh CM, Liu Y, Dhawan V, Abraham NG, Perrella MA, Mitsialis SA and Kourembanas S. Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia. Proc Natl Acad Sci U S A. 2001;98:8798-803.
88. Fujita T, Toda K, Karimova A, Yan SF, Naka Y, Yet SF and Pinsky DJ. Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by derepression of fibrinolysis. Nat Med. 2001;7:598-604.
89. P OC and Colleran E. Properties and kinetics of biliverdin reductase. The Biochemical journal. 1971;125:110P.
90. Singleton JW and Laster L. Biliverdin reductase of guinea pig liver. J Biol Chem. 1965;240:4780-9.
91. Foresti R, Goatly H, Green CJ and Motterlini R. Role of heme oxygenase-1 in hypoxia-reoxygenation: requirement of substrate heme to promote cardioprotection. Am J Physiol Heart Circ Physiol. 2001;281:H1976-84.
92. Clark JE, Foresti R, Sarathchandra P, Kaur H, Green CJ and Motterlini R. Heme oxygenase-1-derived bilirubin ameliorates postischemic myocardial dysfunction. Am J Physiol Heart Circ Physiol. 2000;278:H643-51.
93. Stocker R, Yamamoto Y, McDonagh AF, Glazer AN and Ames BN. Bilirubin is an antioxidant of possible physiological importance. Science. 1987;235:1043-6.
94. Baranano DE, Rao M, Ferris CD and Snyder SH. Biliverdin reductase: a major physiologic cytoprotectant. Proc Natl Acad Sci U S A. 2002;99:16093-8.
95. Morita T, Imai T, Yamaguchi T, Sugiyama T, Katayama S and Yoshino G. Induction of heme oxygenase-1 in monocytes suppresses angiotensin II-elicited chemotactic activity through inhibition of CCR2: role of bilirubin and carbon monoxide generated by the enzyme. Antioxid Redox Signal. 2003;5:439-47.
96. Ferris CD, Jaffrey SR, Sawa A, Takahashi M, Brady SD, Barrow RK, Tysoe SA, Wolosker H, Baranano DE, Dore S, Poss KD and Snyder SH. Haem oxygenase-1 prevents cell death by regulating cellular iron. Nat Cell Biol. 1999;1:152-7.
97. Balla G, Jacob HS, Balla J, Rosenberg M, Nath K, Apple F, Eaton JW and Vercellotti GM. Ferritin: a cytoprotective antioxidant strategem of endothelium. J Biol Chem. 1992;267:18148-53.
98. Soares MP, Lin Y, Anrather J, Csizmadia E, Takigami K, Sato K, Grey ST, Colvin RB, Choi AM, Poss KD and Bach FH. Expression of heme oxygenase-1 can determine cardiac xenograft survival. Nat Med. 1998;4:1073-7.
99. Sato K, Balla J, Otterbein L, Smith RN, Brouard S, Lin Y, Csizmadia E, Sevigny J, Robson SC, Vercellotti G, Choi AM, Bach FH and Soares MP. Carbon monoxide generated by heme oxygenase-1 suppresses the rejection of mouse-to-rat cardiac transplants. J Immunol. 2001;166:4185-94.
100. Otterbein LE, Bach FH, Alam J, Soares M, Tao Lu H, Wysk M, Davis RJ, Flavell RA and Choi AM. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med. 2000;6:422-8.
101. Wang LJ, Lee TS, Lee FY, Pai RC and Chau LY. Expression of heme oxygenase-1 in atherosclerotic lesions. Am J Pathol. 1998;152:711-20.
102. Yamaguchi M, Sato H and Bannai S. Induction of stress proteins in mouse peritoneal macrophages by oxidized low-density lipoprotein. Biochem Biophys Res Commun. 1993;193:1198-201.
103. Ishikawa K, Navab M, Leitinger N, Fogelman AM and Lusis AJ. Induction of heme oxygenase-1 inhibits the monocyte transmigration induced by mildly oxidized LDL. The Journal of clinical investigation. 1997;100:1209-16.
104. Assoian RK, Komoriya A, Meyers CA, Miller DM and Sporn MB. Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization. J Biol Chem. 1983;258:7155-60.
105. Tandon A, Tovey JC, Sharma A, Gupta R and Mohan RR. Role of transforming growth factor Beta in corneal function, biology and pathology. Current molecular medicine. 2010;10:565-78.
106. Lebrin F, Deckers M, Bertolino P and Ten Dijke P. TGF-beta receptor function in the endothelium. Cardiovascular research. 2005;65:599-608.
107. Sporn MB, Roberts AB, Wakefield LM and Assoian RK. Transforming growth factor-beta: biological function and chemical structure. Science. 1986;233:532-4.
108. Baird A and Durkin T. Inhibition of endothelial cell proliferation by type beta-transforming growth factor: interactions with acidic and basic fibroblast growth factors. Biochem Biophys Res Commun. 1986;138:476-82.
109. Heimark RL, Twardzik DR and Schwartz SM. Inhibition of endothelial regeneration by type-beta transforming growth factor from platelets. Science. 1986;233:1078-80.
110. Kehrl JH, Roberts AB, Wakefield LM, Jakowlew S, Sporn MB and Fauci AS. Transforming growth factor beta is an important immunomodulatory protein for human B lymphocytes. J Immunol. 1986;137:3855-60.
111. Kehrl JH, Wakefield LM, Roberts AB, Jakowlew S, Alvarez-Mon M, Derynck R, Sporn MB and Fauci AS. Production of transforming growth factor beta by human T lymphocytes and its potential role in the regulation of T cell growth. J Exp Med. 1986;163:1037-50.
112. Ristow HJ. BSC-1 growth inhibitor/type beta transforming growth factor is a strong inhibitor of thymocyte proliferation. Proc Natl Acad Sci U S A. 1986;83:5531-3.
113. Knabbe C, Lippman ME, Wakefield LM, Flanders KC, Kasid A, Derynck R and Dickson RB. Evidence that transforming growth factor-beta is a hormonally regulated negative growth factor in human breast cancer cells. Cell. 1987;48:417-28.
114. Masui T, Wakefield LM, Lechner JF, LaVeck MA, Sporn MB and Harris CC. Type beta transforming growth factor is the primary differentiation-inducing serum factor for normal human bronchial epithelial cells. Proc Natl Acad Sci U S A. 1986;83:2438-42.
115. Tucker RF, Shipley GD, Moses HL and Holley RW. Growth inhibitor from BSC-1 cells closely related to platelet type beta transforming growth factor. Science. 1984;226:705-7.
116. Biro S, Z.-X. Yu, and W. Casscells. Fibroblast and transforming growth factors in endothelial wound healing in vitro. . J Am Coll Cardiol. 1991;17:(Abstr.).
117. Roberts A, and M. B. Sporn. . The transforming growth factor-betas. In Peptide Growth Factors and Their Receptors. 419-472. Handbook of Experimental Pharmacology. 1990.
118. Majack RA. Beta-type transforming growth factor specifies organizational behavior in vascular smooth muscle cell cultures. J Cell Biol. 1987;105:465-71.
119. Roberts AB, Anzano MA, Lamb LC, Smith JM and Sporn MB. New class of transforming growth factors potentiated by epidermal growth factor: isolation from non-neoplastic tissues. Proc Natl Acad Sci U S A. 1981;78:5339-43.
120. Battegay EJ, Raines EW, Seifert RA, Bowen-Pope DF and Ross R. TGF-beta induces bimodal proliferation of connective tissue cells via complex control of an autocrine PDGF loop. Cell. 1990;63:515-24.
121. Kasid A, Bell GI and Director EP. Effects of transforming growth factor-beta on human lymphokine-activated killer cell precursors. Autocrine inhibition of cellular proliferation and differentiation to immune killer cells. J Immunol. 1988;141:690-8.
122. Ross R, E. J. Battegay, and E. W. Raines. . Chronic inflammation, PDGF, TGF-beta, and smooth muscle cell proliferation. . J Cell Biochem Suppl. 1991;15C:(Abstr.).
123. Bobik A. Transforming growth factor-betas and vascular disorders. Arteriosclerosis, thrombosis, and vascular biology. 2006;26:1712-20.
124. Mallat Z, Gojova A, Marchiol-Fournigault C, Esposito B, Kamate C, Merval R, Fradelizi D and Tedgui A. Inhibition of transforming growth factor-beta signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice. Circulation research. 2001;89:930-4.
125. Liu JM and Davidson JM. The elastogenic effect of recombinant transforming growth factor-beta on porcine aortic smooth muscle cells. Biochem Biophys Res Commun. 1988;154:895-901.
126. Chen JK, Hoshi H and McKeehan WL. Transforming growth factor type beta specifically stimulates synthesis of proteoglycan in human adult arterial smooth muscle cells. Proc Natl Acad Sci U S A. 1987;84:5287-91.
127. Grainger DJ, Kemp PR, Metcalfe JC, Liu AC, Lawn RM, Williams NR, Grace AA, Schofield PM and Chauhan A. The serum concentration of active transforming growth factor-beta is severely depressed in advanced atherosclerosis. Nat Med. 1995;1:74-9.
128. Majesky MW, Lindner V, Twardzik DR, Schwartz SM and Reidy MA. Production of transforming growth factor beta 1 during repair of arterial injury. The Journal of clinical investigation. 1991;88:904-10.
129. Cipollone F, Fazia M, Mincione G, Iezzi A, Pini B, Cuccurullo C, Ucchino S, Spigonardo F, Di Nisio M, Cuccurullo F, Mezzetti A and Porreca E. Increased expression of transforming growth factor-beta1 as a stabilizing factor in human atherosclerotic plaques. Stroke. 2004;35:2253-7.
130. Werner F, Jain MK, Feinberg MW, Sibinga NE, Pellacani A, Wiesel P, Chin MT, Topper JN, Perrella MA and Lee ME. Transforming growth factor-beta 1 inhibition of macrophage activation is mediated via Smad3. J Biol Chem. 2000;275:36653-8.
131. Mitani T, Terashima M, Yoshimura H, Nariai Y and Tanigawa Y. TGF-beta1 enhances degradation of IFN-gamma-induced iNOS protein via proteasomes in RAW 264.7 cells. Nitric oxide : biology and chemistry / official journal of the Nitric Oxide Society. 2005;13:78-87.
132. DiChiara MR, Kiely JM, Gimbrone MA, Jr., Lee ME, Perrella MA and Topper JN. Inhibition of E-selectin gene expression by transforming growth factor beta in endothelial cells involves coactivator integration of Smad and nuclear factor kappaB-mediated signals. J Exp Med. 2000;192:695-704.
133. Inoue N, Venema RC, Sayegh HS, Ohara Y, Murphy TJ and Harrison DG. Molecular regulation of the bovine endothelial cell nitric oxide synthase by transforming growth factor-beta 1. Arteriosclerosis, thrombosis, and vascular biology. 1995;15:1255-61.
134. Panousis CG, Evans G and Zuckerman SH. TGF-beta increases cholesterol efflux and ABC-1 expression in macrophage-derived foam cells: opposing the effects of IFN-gamma. Journal of lipid research. 2001;42:856-63.
135. Irvine SA, Foka P, Rogers SA, Mead JR and Ramji DP. A critical role for the Sp1-binding sites in the transforming growth factor-beta-mediated inhibition of lipoprotein lipase gene expression in macrophages. Nucleic acids research. 2005;33:1423-34.
136. Grainger DJ, Mosedale DE, Metcalfe JC and Bottinger EP. Dietary fat and reduced levels of TGFbeta1 act synergistically to promote activation of the vascular endothelium and formation of lipid lesions. J Cell Sci. 2000;113 ( Pt 13):2355-61.
137. Lutgens E, Gijbels M, Smook M, Heeringa P, Gotwals P, Koteliansky VE and Daemen MJ. Transforming growth factor-beta mediates balance between inflammation and fibrosis during plaque progression. Arteriosclerosis, thrombosis, and vascular biology. 2002;22:975-82.
138. Robertson AK, Rudling M, Zhou X, Gorelik L, Flavell RA and Hansson GK. Disruption of TGF-beta signaling in T cells accelerates atherosclerosis. The Journal of clinical investigation. 2003;112:1342-50.
139. Gospodarowicz D, Ferrara N, Schweigerer L and Neufeld G. Structural characterization and biological functions of fibroblast growth factor. Endocr Rev. 1987;8:95-114.
140. Madri JA, Reidy MA, Kocher O and Bell L. Endothelial cell behavior after denudation injury is modulated by transforming growth factor-beta1 and fibronectin. Lab Invest. 1989;60:755-65.
141. Singh NN and Ramji DP. The role of transforming growth factor-beta in atherosclerosis. Cytokine & growth factor reviews. 2006;17:487-99.
142. Jakowlew SB, Dillard PJ, Winokur TS, Flanders KC, Sporn MB and Roberts AB. Expression of transforming growth factor-beta s 1-4 in chicken embryo chondrocytes and myocytes. Dev Biol. 1991;143:135-48.
143. Gotto AM, Jr. Ongoing clinical trials of statins. Am J Cardiol. 2001;88:36F-40F.
144. Gotto AM, Jr. Statin therapy: where are we? Where do we go next? Am J Cardiol. 2001;87:13B-18B.
145. Wassmann S, Laufs U, Baumer AT, Muller K, Ahlbory K, Linz W, Itter G, Rosen R, Bohm M and Nickenig G. HMG-CoA reductase inhibitors improve endothelial dysfunction in normocholesterolemic hypertension via reduced production of reactive oxygen species. Hypertension. 2001;37:1450-7.
146. Laufs U, Kilter H, Konkol C, Wassmann S, Bohm M and Nickenig G. Impact of HMG CoA reductase inhibition on small GTPases in the heart. Cardiovascular research. 2002;53:911-20.
147. Hattori Y, Nakanishi N and Kasai K. Statin enhances cytokine-mediated induction of nitric oxide synthesis in vascular smooth muscle cells. Cardiovascular research. 2002;54:649-58.
148. Madonna R, Di Napoli P, Massaro M, Grilli A, Felaco M, De Caterina A, Tang D, De Caterina R and Geng YJ. Simvastatin attenuates expression of cytokine-inducible nitric-oxide synthase in embryonic cardiac myoblasts. J Biol Chem. 2005;280:13503-11.
149. Libby P and Aikawa M. Mechanisms of plaque stabilization with statins. Am J Cardiol. 2003;91:4B-8B.
150. Vaughan CJ, Gotto AM, Jr. and Basson CT. The evolving role of statins in the management of atherosclerosis. J Am Coll Cardiol. 2000;35:1-10.
151. Bu DX, Griffin G and Lichtman AH. Mechanisms for the anti-inflammatory effects of statins. Current opinion in lipidology. 2011;22:165-70.
152. LaRosa JC, He J and Vupputuri S. Effect of statins on risk of coronary disease: a meta-analysis of randomized controlled trials. JAMA. 1999;282:2340-6.
153. Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AM, Jr., Kastelein JJ, Koenig W, Libby P, Lorenzatti AJ, MacFadyen JG, Nordestgaard BG, Shepherd J, Willerson JT, Glynn RJ and Group JS. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. The New England journal of medicine. 2008;359:2195-207.
154. Ridker PM, Rifai N, Rose L, Buring JE and Cook NR. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. The New England journal of medicine. 2002;347:1557-65.
155. Albert MA, Danielson E, Rifai N, Ridker PM and Investigators P. Effect of statin therapy on C-reactive protein levels: the pravastatin inflammation/CRP evaluation (PRINCE): a randomized trial and cohort study. JAMA. 2001;286:64-70.
156. Hanefeld M, Marx N, Pfutzner A, Baurecht W, Lubben G, Karagiannis E, Stier U and Forst T. Anti-inflammatory effects of pioglitazone and/or simvastatin in high cardiovascular risk patients with elevated high sensitivity C-reactive protein: the PIOSTAT Study. J Am Coll Cardiol. 2007;49:290-7.
157. Olsson AG, McTaggart F and Raza A. Rosuvastatin: a highly effective new HMG-CoA reductase inhibitor. Cardiovascular drug reviews. 2002;20:303-28.
158. Rosenson RS. Statins in atherosclerosis: lipid-lowering agents with antioxidant capabilities. Atherosclerosis. 2004;173:1-12.
159. Tardif JC, McMurray JJ, Klug E, Small R, Schumi J, Choi J, Cooper J, Scott R, Lewis EF, L'Allier PL, Pfeffer MA and Aggressive Reduction of Inflammation Stops Events Trial I. Effects of succinobucol (AGI-1067) after an acute coronary syndrome: a randomised, double-blind, placebo-controlled trial. Lancet. 2008;371:1761-8.
160. O'Connor RE, Bossaert L, Arntz HR, Brooks SC, Diercks D, Feitosa-Filho G, Nolan JP, Vanden Hoek TL, Walters DL, Wong A, Welsford M, Woolfrey K and Acute Coronary Syndrome Chapter C. Part 9: Acute coronary syndromes: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation. 2010;122:S422-65.
161. Greenwood J, Steinman L and Zamvil SS. Statin therapy and autoimmune disease: from protein prenylation to immunomodulation. Nat Rev Immunol. 2006;6:358-70.
162. Thompson PD, Clarkson P and Karas RH. Statin-associated myopathy. JAMA. 2003;289:1681-90.
163. Kalaria D and Wassenaar W. Rhabdomyolysis and cerivastatin: was it a problem of dose? CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne. 2002;167:737.
164. Egan A and Colman E. Weighing the benefits of high-dose simvastatin against the risk of myopathy. The New England journal of medicine. 2011;365:285-7.
165. Molinski TF, Dalisay DS, Lievens SL and Saludes JP. Drug development from marine natural products. Nat Rev Drug Discov. 2009;8:69-85.
166. Jean YH, Chen WF, Duh CY, Huang SY, Hsu CH, Lin CS, Sung CS, Chen IM and Wen ZH. Inducible nitric oxide synthase and cyclooxygenase-2 participate in anti-inflammatory and analgesic effects of the natural marine compound lemnalol from Formosan soft coral Lemnalia cervicorni. European journal of pharmacology. 2008;578:323-31.
167. Jean YH, Chen WF, Sung CS, Duh CY, Huang SY, Lin CS, Tai MH, Tzeng SF and Wen ZH. Capnellene, a natural marine compound derived from soft coral, attenuates chronic constriction injury-induced neuropathic pain in rats. British journal of pharmacology. 2009;158:713-25.
168. Eguchi K, Fujiwara Y, Hayashida A, Horlad H, Kato H, Rotinsulu H, Losung F, Mangindaan RE, De Voogd NJ and Takeya M. Manzamine A, a marine-derived alkaloid, inhibits accumulation of cholesterol ester in macrophages and suppresses hyperlipidemia and atherosclerosis in vivo. Bioorganic & medicinal chemistry. 2013;21:3831-3838.
169. Wen ZH, Chao CH, Wu MH and Sheu JH. A neuroprotective sulfone of marine origin and the in vivo anti-inflammatory activity of an analogue. European journal of medicinal chemistry. 2010;45:5998-6004.
170. Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R and Verna JM. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease. Prog Neurobiol. 2001;65:135-72.
171. Kitamura Y, Kosaka T, Kakimura JI, Matsuoka Y, Kohno Y, Nomura Y and Taniguchi T. Protective effects of the antiparkinsonian drugs talipexole and pramipexole against 1-methyl-4-phenylpyridinium-induced apoptotic death in human neuroblastoma SH-SY5Y cells. Mol Pharmacol. 1998;54:1046-54.
172. Brown MS and Goldstein JL. Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem. 1983;52:223-61.
173. Molloy RG, Mannick JA and Rodrick ML. Cytokines, sepsis and immunomodulation. Br J Surg. 1993;80:289-97.
174. Baker CS, Hall RJ, Evans TJ, Pomerance A, Maclouf J, Creminon C, Yacoub MH and Polak JM. Cyclooxygenase-2 is widely expressed in atherosclerotic lesions affecting native and transplanted human coronary arteries and colocalizes with inducible nitric oxide synthase and nitrotyrosine particularly in macrophages. Arteriosclerosis, thrombosis, and vascular biology. 1999;19:646-55.
175. Wang H, Zhang J, Wu H, Jiang C, Zheng Q and Li Z. Inhibition of RAW264.7 macrophage inflammatory cytokines release by small hairpin RNAi targeting TLR4. J Huazhong Univ Sci Technolog Med Sci. 2006;26:500-3.
176. Chen JS, Chen YL, Greenberg AS, Chen YJ and Wang SM. Magnolol stimulates lipolysis in lipid‐laden RAW 264.7 macrophages. Journal of cellular biochemistry. 2005;94:1028-1037.
177. Chen JS, Greenberg AS and Wang SM. Oleic acid-induced PKC isozyme translocation in RAW 264.7 macrophages. J Cell Biochem. 2002;86:784-91.
178. Chao CH, Wen ZH, Wu YC, Yeh HC and Sheu JH. Cytotoxic and anti-inflammatory cembranoids from the soft coral Lobophytum crassum. J Nat Prod. 2008;71:1819-24.
179. Lowry OH, Rosebrough NJ, Farr AL and Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265-75.
180. Wen ZH, Wu GJ, Chang YC, Wang JJ and Wong CS. Dexamethasone modulates the development of morphine tolerance and expression of glutamate transporters in rats. Neuroscience. 2005;133:807-17.
181. Wu GJ, Chen WF, Hung HC, Jean YH, Sung CS, Chakraborty C, Lee HP, Chen NF and Wen ZH. Effects of propofol on proliferation and anti-apoptosis of neuroblastoma SH-SY5Y cell line: new insights into neuroprotection. Brain Res. 2011;1384:42-50.
182. Jamkhande PG, Chandak PG, Dhawale SC, Barde SR, Tidke PS and Sakhare RS. Therapeutic approaches to drug targets in atherosclerosis. Saudi Pharm J. 2014;22:179-90.
183. Hong CH, Hur SK, Oh OJ, Kim SS, Nam KA and Lee SK. Evaluation of natural products on inhibition of inducible cyclooxygenase (COX-2) and nitric oxide synthase (iNOS) in cultured mouse macrophage cells. J Ethnopharmacol. 2002;83:153-9.
184. Mori M, Itabe H, Higashi Y, Fujimoto Y, Shiomi M, Yoshizumi M, Ouchi Y and Takano T. Foam cell formation containing lipid droplets enriched with free cholesterol by hyperlipidemic serum. Journal of lipid research. 2001;42:1771-81.
185. Gbelcova H, Sveda M, Laubertova L, Varga I, Vitek L, Kolar M, Strnad H, Zelenka J, Bohmer D and Ruml T. The effect of simvastatin on lipid droplets accumulation in human embryonic kidney cells and pancreatic cancer cells. Lipids Health Dis. 2013;12:126.
186. Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM and Czaja MJ. Autophagy regulates lipid metabolism. Nature. 2009;458:1131-5.
187. Bobryshev YV, Shchelkunova TA, Morozov IA, Rubtsov PM, Sobenin IA, Orekhov AN and Smirnov AN. Changes of lysosomes in the earliest stages of the development of atherosclerosis. J Cell Mol Med. 2013;17:626-35.
188. Emanuel R, Sergin I, Bhattacharya S, Turner JN, Epelman S, Settembre C, Diwan A, Ballabio A and Razani B. Induction of lysosomal biogenesis in atherosclerotic macrophages can rescue lipid-induced lysosomal dysfunction and downstream sequelae. Arteriosclerosis, thrombosis, and vascular biology. 2014;34:1942-52.
189. Sullivan JE, Brocklehurst KJ, Marley AE, Carey F, Carling D and Beri RK. Inhibition of lipolysis and lipogenesis in isolated rat adipocytes with AICAR, a cell-permeable activator of AMP-activated protein kinase. FEBS Lett. 1994;353:33-6.
190. Frutkin AD, Otsuka G, Stempien-Otero A, Sesti C, Du L, Jaffe M, Dichek HL, Pennington CJ, Edwards DR, Nieves-Cintron M, Minter D, Preusch M, Hu JH, Marie JC and Dichek DA. TGF-[beta]1 limits plaque growth, stabilizes plaque structure, and prevents aortic dilation in apolipoprotein E-null mice. Arteriosclerosis, thrombosis, and vascular biology. 2009;29:1251-7.
191. Youssef S, Stuve O, Patarroyo JC, Ruiz PJ, Radosevich JL, Hur EM, Bravo M, Mitchell DJ, Sobel RA, Steinman L and Zamvil SS. The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature. 2002;420:78-84.
192. Li XY, Wang C, Xiang XR, Chen FC, Yang CM and Wu J. Porphyromonas gingivalis lipopolysaccharide increases lipid accumulation by affecting CD36 and ATP-binding cassette transporter A1 in macrophages. Oncol Rep. 2013;30:1329-36.
193. Dong M, Yang X, Lim S, Cao Z, Honek J, Lu H, Zhang C, Seki T, Hosaka K, Wahlberg E, Yang J, Zhang L, Lanne T, Sun B, Li X, Liu Y, Zhang Y and Cao Y. Cold exposure promotes atherosclerotic plaque growth and instability via UCP1-dependent lipolysis. Cell Metab. 2013;18:118-29.
194. Paine A, Eiz-Vesper B, Blasczyk R and Immenschuh S. Signaling to heme oxygenase-1 and its anti-inflammatory therapeutic potential. Biochemical pharmacology. 2010;80:1895-903.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.187.103
論文開放下載的時間是 校外不公開

Your IP address is 3.144.187.103
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code