Responsive image
博碩士論文 etd-0523112-110630 詳細資訊
Title page for etd-0523112-110630
論文名稱
Title
鋅元素對鋁鋅合金的機械性質之影響
The influence of Zn on the mechanical property of Al-Zn alloy
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
110
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-05-04
繳交日期
Date of Submission
2012-05-23
關鍵字
Keywords
動態回復效應、m值(應變速率敏感係數)、細晶強化作用、固溶強化作用、摩擦攪拌製程
friction stir processing, dynamic recovery, Strain rate sensitivity, Hall-Petch equation, solid solute softening
統計
Statistics
本論文已被瀏覽 5709 次,被下載 0
The thesis/dissertation has been browsed 5709 times, has been downloaded 0 times.
中文摘要
本實驗研究鋁鋅合金的機械性質,探討其因不同鋅含量、晶粒尺寸及拉伸速率而展現的機械強度變化趨勢及其塑性變形機制為何。
研究用的實驗樣本以摩擦攪拌製程製作,在適當轉速下,以不同鋅含量的鋁鋅混合粉末為母材,在適當轉速下,共計製作晶粒尺寸為1.5μm、1μm及0.5μm,及鋅含量為2.5wt%、5wt%、7.5wt%、10wt%及15wt% 共15種不同實驗條件的樣本,前述樣本以3種不同拉伸速率(10-3s-1、10-4s-1及10-5s-1)進行拉伸實驗測試,共計得到45組的機械性質實驗數據。
各組數據接著用以製作相對應的工程與真實拉伸應力圖、流動應力-鋅含量圖、Hall-Petch關係圖、m值-鋅含量及m值-晶粒尺寸圖,數據分析後發現在適當實驗條件下,鋁鋅合金可展現固溶軟化效應及反Hall-Petch關係,在超細晶尺度,鋅含量大於11.7wt%的實驗條件下,此兩現象隨拉伸速率下降愈加明顯。
應變速率敏感係數的數據分析結果顯示,當鋁鋅合金展示固溶軟化效應及反Hall-Petch關係的同時,m值有隨鋅含量上升及晶粒尺寸下降而上升的趨勢,此間變化原因可能為鋅元素在晶界處的高擴散係數,其令鋁鋅合金的動態回復效率遠高於他種鋁基合金,隨著鋅含量增高、晶粒尺寸縮小及拉伸速率下降,動態回復效應隨之愈加明顯,使高鋅含量的鋁鋅合金於晶粒尺寸為1μm時,即因晶粒弱化機構而具有反Hall-Petch關係。
Abstract
In this study, mechanical properties of Al-Zn alloys were conducted, with various parameters including Zn contents, grain size, and tensile strain rate. Experimental samples were all manufactured with friction stir processing method. Samples of Al-Zn alloys with the grain size of 1.5μm, 1μm, or 0.5μm and five Zn concentration were pulled in tension at strain rate of 10-3s-1,10-4s-1 and 10-5s-1 .
The data set were then used to draw engineering and true tensile stress vs. strain curves , flowing stress vs. Zn contents curves, Hall-Petch equation curves, m vs. Zn contents curves and m vs. grain size curves. Quantitative analysis were conducted to discover that solid solute softening and inverse Hall-Petch relation were present in Al-Zn alloys, which were more prominent at slower tensile strain rate when grain size was less than 1μm and the Zn contents was higher than 10wt%.
Quantitative analysis of strain rate sensitivity (m) showed the trends of increasing value of m with higher Zn contents and smaller grain sizes when solid solute softening and inverse Hall-Petch relation were present. The high grain-boundary diffusion coefficient of Zn which accelerates the efficiency of dynamic recovery are considered the main reason. The effect gets more prominent with increasing Zn contents , smaller grain size , and slower tensile strain rate. For Zn concentration higher than 10wt%, dynamic recovery may drive inverse Hall-Petch relation to appear when grain size is about 1μm large.
目次 Table of Contents
目錄

論文審定書 i
摘要ii
Abstract. iii
第1章 前言 1
1.1 背景說明 1
1.2 研究動機及目的 3
第2章 文獻回顧 4
2.1 摩擦攪拌製程用於製作超細晶材料 4
2.1.1 摩擦攪拌製程 4
2.1.2 摩擦攪拌製程晶粒尺寸 4
2.2 Al-Zn 合金的基本性質 5
2.2.1 Al-Zn 合金的機械性質 6
2.3 金屬基複合材料的機械性質 6
2.3.1 加工硬化 6
2.3.2 細晶強化 8
2.3.3 Hall-Petch 曲線偏差相關理論 8
2.3.4 應變速率敏感係數 11
2.3.5 動態回復效率之相關理論 14
第3章 實驗方法 16
3.1 實驗材料成分與製備 16
3.1.1 鋁粉與鋅粉 16
3.1.2 實驗塊材製作 16
3.2 摩擦攪拌製程 16
3.2.1 工具頭與夾具 16
3.2.2 摩擦攪拌製成機器簡介 17
3.2.3 摩擦攪拌製程步驟 17
3.3 巨觀結構與微觀組織分析 17
3.3.1 掃描式電子顯微鏡觀察試片的晶粒大小 17
3.3.2 X光繞射分析 17
3.3.3 電子微探儀 (EPMA) 定量分析 18
3.3.4 穿透式電子顯微鏡觀察差排分布情形 18
3.4 機械性質測量 18
3.4.1 拉伸試驗 18
第4章 實驗結果與討論 19
4.1 晶粒大小 19
4.2 X光繞射分析 19
4.3 電子微探儀定量分析結果 20
4.4 拉伸性質量測 20
4.4.1 應力應變曲線 20
4.4.2 鋅原子與拉伸速率的互動對機械性質的影響 21
4.4.3 鋅含量與Hall-Petch relation 關係曲線圖 23
4.4.4 m值變動與拉伸速率及晶粒尺寸關係 24
4.4.5 TEM觀察結果 27
第5章 結論 28
參考文獻 30
表 35
圖 45



參考文獻 References
參考文獻

1. Birringer R., "Nanocrystalline materials", Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 1989 vol. 117 No. (1-2) pp. 33-43.
2. Arzt E., "Size effects in materials due to microstructural and dimensional constraints: A comparative review", Acta Materialia, 1998 vol. 46 No. (16) pp. 5611-5626.
3. Gleiter H., "Nanostructured materials: basic concepts and microstructure", Acta Materialia, 2000 vol. 48 No. (1) pp. 1-29.
4. Kumar K. S., Van Swygenhoven H. and Suresh S., "Mechanical behavior of nanocrystalline metals and alloys", Acta Materialia, 2003 vol. 51 No. (19) pp. 5743-5774.
5. Meyers M. A., Mishra A. and Benson D. J., "Mechanical properties of nanocrystalline Materials", Progress in Materials Science, 2006 vol. 51
pp. 427–556.
6. Lee S., Park H. J. Y. and Yoon C., "A study of hydrostatic extrusion as a consolidation process for fabricating ultrafine-grained bulk Al–Mg alloy", Journal of Materials Processing Technology, 2007 vol. 191 No. (1-3)
pp. 396-399.
7. Azushima A., Kopp R. and Korhonen A., "Severe plastic deformation (SPD) processes for metals.", CIRP Annals - Manufacturing Technology,
2008 vol. 57 No. (2) pp. 716-735.
8. Orlov D., Todaka Y. and Umemoto M., "Role of strain reversal in grain refinement by severe plastic deformation", Materials Science and Engineering A , 2009 vol. 499 No. (1-2) pp. 427-433.
9. Rosen A. Chokshi A.H., Karch J., Gleiter H., "On the validity of the Hall-Petch relationship in nanocrystalline materials", Scripta metallurgica, 1989 vol. 23 pp. 1679-1684.
10. Yu C. Y., "Mechanical properties of ultrafine grained aluminum", PhD Thesis National Sun Yat-Sen University,2009.
11. Weertman J. R., "Hall-Petch strengthening in nanocrystalline metals", Materials Science and Engineering A 1993 vol. 166 pp. 161-167.
12. Masamura R. A., Hazzledine P. M., Liaw P. K. and Lavernia E. J., "Yield stress of fine grained materials", Acta Materialia, 1998 vol. 46 No. (13)
pp. 4527-4534.
13. Conrad H. and Narayan J., "On the grain size softening in nanocrystalline Materials", Scripta Materialia, 2000 vol. 42 pp. 1025-1030.
14. Van Swygenhoven H., Spaczer M. and Caro A., "Microscopic description of plasticity in computer generated metallic nanophase samples: a comparison between Cu and Ni", Acta Materialia, 1999 vol. 47
pp. 3117-3126.
15. Takeuchi S., "The mechanism of the inverse Hall–Petch relation in nanocrystals", Scripta Materialia, 2001 vol. 44 No. (8-9) pp. 1483-1487.
16. Yamakov V., Wolf D., Salazar M., Phillpot S. R. and Gleiter H., " Deformation mechanism crossover and mechanical behavior in nanocrystalline", Philosophical Magazine Letters, 2003 vol. 83 No. (6)
pp. 385-393.
17. Yamakov V., Wolf D., Phillpot S. R., Mukherjee A. K. and Gleiter H., "Deformation-mechanism map for nanocrystalline metals by molecular dynamics simulation", Nature Materials 2004 vol. 3 pp. 43-47.
18. Scattergood R. O. and Koch C. C., "A modified-model for Hall–Petch behavior in nanocrystalline materials", Scripta Metallurgica, 1992 vol. 27 pp. 1195-1200.
19. Buadelet Lian B. and Nazarov A., "Model for the prediction of the mechanical behavior of nanocrystalline materials", Materials Science and Engineering A, 1993 vol. 172 No. (1-2) pp. 23-29.
20. Hu C.M., "Solute and Dispersoid combined effects on mechanical properties of ultrafine grained Al alloy produced by friction stir processing", PhD Thesis National Sun Yat-Sen University,2009.
21. Koch C. C. Malow T. R., Miraglia P. Q., Murty K. L., "Compressive mechanical behavior of nanocrystalline Fe investigated with an automated ball indentation technique", Materials Science and Engineering A, 1998
vol. 252 pp. 36-43.
22. Ho‥ppel H. W. May J, Go‥ken M., In: Horita Z ,Langdon TG,editors Report. Proceedings of the 3rd internaional conference on nanomaterials by severe plastic deformation, Nanospd 3, Fokuoka, Japan, 2005.
23. Höppel H. W. May J., Göken M., "Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation", Scripta Materialia, 2005 vol. 53 No. (2) pp. 189-194.
24. Höppel H. W. , May, J., Göken, M., "Enhanced strength and ductility in ultrafine-grained aluminium produced by accumulative roll bonding", Advanced Engineering Materials, 2004 vol. 6 No. (9) pp. 781-784.
25. Wang H. Zhang X., Scattergood R. O., Narayan J., Koch C. C., "Modulated oscillatory hardening and dynamic recrystallization in cryomilled nanocrystalline Zn", Acta Materialia, 2002 vol. 50 pp. 3995-4004.
26. Wang Y. Y., "Solute effect on mechanical properties of ultrafine grained Al-Mg alloy produced by friction stir processing", Master Thesis National Sun Yat-Sen University,2010.
27. Lai Z. M., "Work hardening behavior of ultra fine grained commercially aluminum alloy containing nanoscale alumina dispersoids produced by friction stir processing", Master thesis National Sun Yat-Sen University,2009.
28. Mishra R. S. and Mahoney M. W., "Friction stir processing: A new grain refinement technique to achieve high strain rate superplasticity in commercial alloys", Materials Science Forum, 2001 vol. 357-359
pp. 507-514.
29. Mishra R. S and Ma Z. Y., "Friction stir welding and processin", Materials Science & Engineering R-Reports, 2005 vol. 50 No. (1-2) pp. 1-78.
30. Chen Y. L., "Studies of grain evolution in 1050 aluminum alloy during friction stir process", Master thesis National Sun Yat-Sen University , 2006.
31. Kubaschewski O. and Alcock C. B., "Metallurgical Thermochemistry fifth ed. ", 1979 vol. 24 pp. 378-384.
32. Loffler H., "Structure and Structure Development of Al-Zn Alloys",
Akademmie Verlag , 1995 chapter 3 . pp.242-245
33. Neuhauser H. and Schwink C., "Solid Solution Strengthening", Materials Science & Technology, 1993 vol. 6 pp. 191.
34. Thompson A. W., "Work hardening in tension and fatigue", In: New York . American Institute of Mining, Metallurgical and Petroleum Engineers ,1977 .
35. Margolin H., "Polycrystalline yielding—perspectives on its onset",
acta materialia, 1998 vol. 46 pp. 6305-6309.
36. Gray HI G. T., Lowe T. C., Cady C. M., Valiev R. Z. and Aleksandrov I. V., "influence of strain rate & temperature on the Mechanical response of ultrafine-grained cu,ni,and Al-4Cu-0.5Zr", NanoStmaured Materials, 1997 vol. 9 pp. 477-480.
37. Sun S., Adams B. L., Shet C., Saigal S. and King W., "Mesoscale investigation of the deformation field of an aluminum bicrystal",
Scripta Materialia, 1998 vol. 39 No. (4-5) pp. 501-508.
38. Benson D. J., Hsueh-Hung Fu and Meyers M. A., "On the effect of grain size on yield stress: extension into nanocrystalline domain", Materials Science and Engineering A, 2001 vol. 319-321 pp. 854-861.
39. KIM H. S., ESTRIN Y. and BUSH M. B., "Plastic deformation behaviour of fine-grained materials", Acta Materialia, 2000 vol. 48 No. (2) pp. 493-504.
40. Gleiter H., "On the structure of grain boundaries in metals", NATO Conference Series, (Series) 6: Materials Science, 1983 vol. 5 pp. 433-464.
41. KIM H. S. and BUSH. M. B., "The effects of grain size and porosity on the elastic modulus of nanocrystalline materials", NanoStructured Materials,
1999 vol. 11 No. (3) pp. 361-367.
42. Sandersa P.G., Rittnera M., Kiedaischa E., Weertmana J.R., Kungb H. and Lu Y.C., "Creep of nanocrystalline Cu, Pd, and Al-Zr ", Nanostructured Materials,1997 vol. 9 No. (1-8) pp. 433-440.
43. Cai B., Kong Q. P., Lu L. and Lu. K., "Low temperature creep of nanocrystalline pure copper", Materials Science and Engineering A, 2000 vol. 286 pp. 188–192.
44. Van Swygenhoven H. and Derlet P. M., "Grain-boundary sliding in nanocrystalline fcc metals", PHYSICAL REVIEW B, 2001 vol. 64 No. (22) pp. 224105 1-9.
45. Raj R. and Ashby M. F., "On grain boundary sliding and diffusional creep", Metallurgical Transactions, 1971 vol. 2 No. (4) pp. 1113-1127
46. Wei Q., Cheng S., Ramesh K. T. and Ma E., "Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals", Materials Science and Engineering A, 2004 vol. 381 pp. 71-79.
47. Kocks U. F., Argon A. S. and Ashby M. F., "Thermodynamics and Kinetics of Slip," Materials Science 1975 vol. 19
48. Cahn J. W. and Nabarro F. R. N., "Thermal activation under shear", Philosophical Magazine A, 2001 vol. 81 No. (5) pp. 1409-1426.
49. Nabarro F. R. N., "One-dimensional models of thermal activation under shear stress", Philosophical Magazine A, 2003 vol. 83 No. (26)
pp. 3047-3054.
50. Taylor G., "Thermally-Activated Deformation of BCC Metals and Alloys", Progress in Materials Science, 1992 vol. 36 pp. 26-91.
51. Perevezentsev V. N., Rybin V. V. and Chuvil’deev V. N., "The theory of structural superplasticity--ii. Accumulation of defects on the Intergranular and interphase boundaries. Accommodation of the grain-boundary Sliding. The upper bound of the superplastic Strain rate", Acta Metallurgica, 1992 vol. 40 No. (5) pp. 865-905.
52. Li Y. J., Zeng X. H. and Blum W., "Transition from strengthening to softening by grain boundaries in ultrafine-grained Cu", Acta Materialia, 2004 vol. 52 pp. 5009–5018.
53. Häßner A., " Krist technology 1973 vol. 8 No. (k1)
54. Häßner A., " Krist technology 1974 vol. 9 No. (1371)
55. Hasegawa H. Fujita T., Horita Z. and Langdon T. G., "Diffusion in Ultrafine-Grained Al-Mg Alloys", Defect and Diffusion Forum,
2001 vol. 194-199 pp. 1205-1210.
56. Horita Z., Langdon T. G. , Fujita T. , "Characteristics of diffusion in Al-Mg alloys with ultrafine grain sizes", Philosophical Magazine A, 2002 vol. 82 No. (11) pp. 2249-2262.
57. Rodin A. O. ,Dolgopolov N. A. , Simanov A. V., andGontar' I. G. , "Diffusion of copper along the grain boundaries in aluminum", Materials Letters, 2008 vol. 62 pp. 4477-4479.
58. Freitag K., Erdelyi G. , and Mehrer H., "Diffusion of Implanted Sn in Aluminium", Applied Physics A: Solid and Surfaces, 1991 vol. 53
pp. 297-302.


電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.129.247.196
論文開放下載的時間是 校外不公開

Your IP address is 3.129.247.196
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code