Responsive image
博碩士論文 etd-0523114-154053 詳細資訊
Title page for etd-0523114-154053
論文名稱
Title
聚(1,4-環己二酮-1,4-二氫-2-萘基丙烯酸)之合成與電化學特性研究
Synthesis and Electrochemical Studies of Poly(1,4-dioxo-1,4-dihydronaphthalen-2-yl-acrylate)
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
98
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-23
繳交日期
Date of Submission
2014-06-23
關鍵字
Keywords
聚(1,4-環己二酮-1,4-二氫-2-萘基丙烯酸)、表面引發原子轉移自由基聚合、高分子刷、原子力顯微鏡、半可逆系統、循環伏安法
quasireversible, cyclic voltammetry, atomic force microscopy, polymer brush, surface-initiated atom transfer radical polymerization, poly(1,4-dioxo-1,4-dihydronaphthalen-2-yl-acrylate)
統計
Statistics
本論文已被瀏覽 5677 次,被下載 112
The thesis/dissertation has been browsed 5677 times, has been downloaded 112 times.
中文摘要
以原子轉移自由基聚合法(SI-ATRP)成功合成聚(1,4-環己二酮-1,4-二氫-2-萘基丙烯酸)和其高分子刷薄膜電極,且研究此高分子之電化學特性。在聚(1,4-環己二酮-1,4-二氫-2-萘基丙烯酸)高分子方面的研究,藉由核磁共振(NMR)及紅外光譜儀(IR)來鑑定高分子之結構。將此高分子製備成碳複合電極,於氯化鈉水溶液電解液中進行循環伏安法,由實驗結果顯示,當pH值上升,其氧化還原訊號峰增強,並且當pH值達11.8時,會出現兩對氧化還原訊號峰。在高分子刷方面的研究,藉由SI-ATRP於導電玻璃(ITO)及金表面製備羰基高分子刷薄膜電極,利用接觸角及原子力顯微鏡(AFM)來判斷高分子刷薄膜的表面形態,藉由化學分析電子光譜儀(ESCA)來確定高分子刷薄膜之組成,並藉由循環伏安法(CV)及計時電勢法(CP)來鑑定其電化學特性。高分子刷薄膜電極之氧化還原訊號峰一樣會隨著pH值上升而增強。而由實驗結果可得知聚(1,4-環己二酮-1,4-二氫-2-萘基丙烯酸)高分子於電化學系統中為半可逆系統。
Abstract
Poly(1,4-dioxo-1,4-dihydronaphthalen-2-yl-acrylate) (PDDHNA) and its polymer brushes have been successfully synthesized by atom transfer radical polymerization (ATRP). Their electrochemical properties are also studied. In the study of PDDHNA, the structure of PDDHNA is characterized by nuclear magnetic resonance (NMR) spectroscopy and infrared (IR) spectroscopy. The cyclic voltammetry (CV) of PDDHNA/carbon composite electrode in aqueous sodium chloride electrolytes with different pH values are studied, which indicates that the redox signals increases in increasing pH value of the electrolytes. Besides, there are two redox couples at a pH of 11.8. In the study of polymer brushes, PDDHNA are grafted on ITO/glass and Au/Si substrates via surface initiated ATRP to form PDDHNA brush electrodes. The chemical compositions of the polymer brush electrodes are characterized by IR and electron spectroscopy for chemical analysis (ESCA). The contact angle measurement and atomic force microscopy (AFM) confirm that the PDDHNA brushes are grafted on the substrates. Furthermore, the CV results show that the intensity of signals of the polymer brush electrodes increases as the pH value increases. However, the CV results also indicate that the PDDHNA/C and the polymer brush electrodes are quasireversible.
目次 Table of Contents
第一章 緒論 1
1.1 簡介 2
1.2 研究動機 4
第二章 文獻回顧 6
2.1 有機高分子刷 7
2.1.1 有機高分子刷 7
2.1.2 高分子內部電荷轉移 8
2.1.3 高能量密度高分子之設計 9
2.2 有機自由基聚合法 (Free Radical Polymerization) 12
2.2.1 原子轉移自由基聚合法 (Atomic Transfer Radical Polymerization, ATRP) 13
2.2.2 表面起始原子轉移自由基聚合法(Surface-Initiated Atom Transfer Radical Polymerization, SI-ATRP) 15
2.3 有機高分子電池 16
2.3.1 有機高分子電池反應機制 17
第三章 實驗流程 19
3.1 實驗藥品及材料 20
3.2 表面修飾起始劑合成 23
3.2.1 化合物But-3-enyl 2-bromo-2-methylpropanoate的合成 23
3.2.2 起始劑(4-(2-Bromo-2-methyl)propionyloxy)butyltrichlorosilane(BMPBTS) 的合成 23
3.3 化合物Poly(2-vinylanthraquinone)合成 25
3.3.1 化合物2-Iodoanthraquinone合成 25
3.3.2 化合物2-Vinylanthraquinone合成 26
3.3.3 化合物 Poly(2-vinylanthraquinone)合成 27
3.4 化合物Poly(1,4-Dioxo-1,4-dihydronaphthalen-2-yl acrylate)合成 28
3.4.1 化合物1,4-Dioxo-1,4-dihydronaphthalen-2-yl acrylate合成 28
3.4.2 化合物Poly(1,4-dioxo-1,4-dihydronaphthalen-2-yl acrylate)合成 29
3.5 羰基高分子刷製備 30
3.5.1 ITO導電玻璃表面修飾 30
3.5.2 ITO表面羰基高分子刷製備 31
3.5.3 金之修飾 32
3.5.4 金表面羰基高分子刷之製備 33
3.6 實驗儀器與原理 34
3.6.1 核磁共振光譜法 (Nuclear Magnetic Resonance, NMR) 34
3.6.2 紅外線光譜法 (Infrared, IR) 37
3.6.3 膠體滲透層析儀 (Gel Permeation Chromatography, GPC) 38
3.6.4 循環伏安 (Cyclic Voltammetry, CV) 40
3.6.5 計時電勢法 (Chronopotentiometry, CP) 44
3.6.6 原子力顯微鏡 (Atomic Force Microscope, AFM) 45
3.6.7 接觸角 (Contact angle) 48
3.6.8 化學分析電子能譜儀 (Electron Spectroscopy for Chemical Analysis, ESCA) 49
第四章 結果與討論 51
4.1 聚(2-乙烯基蒽醌)高分子之電化學特性 52
4.1.1 聚(2-乙烯基蒽醌)高分子之循環伏安法 52
4.2 聚(1,4-環己二酮-1,4-二氫-2-萘基丙烯酸)高分子之結構鑑定 55
4.2.1 聚(1,4-環己二酮-1,4-二氫-2-萘基丙烯酸)高分子之紅外光譜 55
4.3 聚(1,4-環己二酮-1,4-二氫-2-萘基丙烯酸)高分子之電化學性質分析 57
4.3.1 聚(1,4-環己二酮-1,4-二氫-2-萘基丙烯酸)高分子於有機相電解液之循環伏安法 57
4.3.2 聚(1,4-環己二酮-1,4-二氫-2-萘基丙烯酸)高分子於水相電解液之循環伏安法 57
4.3.3 聚(1,4-環己二酮-1,4-二氫-2-萘基丙烯酸)高分子於水相電解液之計時電勢法 60
4.4 羰基高分子刷表面型態測定 61
4.4.1 高分子刷接觸角測試 61
4.4.2 高分子刷表面型態 63
4.4.3 高分子刷之ESCA鑑定 65
4.5 聚(1,4-環己二酮-1,4-二氫-2-萘基丙烯酸)高分子刷於導電玻璃表面之電化學性質分析 66
4.5.1 聚(1,4-環己二酮-1,4-二氫-2-萘基丙烯酸)高分子刷於水相電解液之循環伏安法 66
4.5.2 聚(1,4-環己二酮-1,4-二氫-2-萘基丙烯酸)高分子刷於有機相電解液之循環伏安法 67
4.6 聚(1,4-環己二酮-1,4-二氫-2-萘基丙烯酸)高分子刷於金表面之電化學性質分析 69
4.6.1 聚(1,4-環己二酮-1,4-二氫-2-萘基丙烯酸)高分子刷於水相電解液之循環伏安法 69
4.6.2 聚(1,4-環己二酮-1,4-二氫-2-萘基丙烯酸)高分子刷於水相電解液之循環伏安法 72
第五章 結論 74
第六章 參考文獻 77
附錄 81
參考文獻 References
(1) Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; Okada, S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144, 1609–1613.
(2) Jugović, D.; Uskoković, D. J. Power Sources 2009, 190, 538–544.
(3) Yazami, R.; Lebrun, N.; Bonneau, M.; Molteni, M. J. Power Sources 1995, 54, 389–392.
(4) Poizot, P.; Dolhem, F. Energy Environ. Sci. 2011, 4, 2003.
(5) Novák, P.; Müller, K.; Santhanam, K. S. V.; Haas, O. Chem. Rev. 1997, 97, 207–282.
(6) Gao, X.-P.; Yang, H.-X. Energy Environ. Sci. 2010, 3, 174.
(7) Beck, F.; Rüetschi, P. Electrochimica Acta 2000, 45, 2467–2482.
(8) Nakahara, K.; Iwasa, S.; Satoh, M.; Morioka, Y.; Iriyama, J.; Suguro, M.; Hasegawa, E. Chem. Phys. Lett. 2002, 359, 351–354.
(9) Choi, W.; Harada, D.; Oyaizu, K.; Nishide, H. J. Am. Chem. Soc. 2011, 133, 19839–19843.
(10) Barbey, R.; Lavanant, L.; Paripovic, D.; Schüwer, N.; Sugnaux, C.; Tugulu, S.; Klok, H.-A. Chem. Rev. 2009, 109, 5437–5527.
(11) Tsujii, Y.; Ohno, K.; Yamamoto, S.; Goto, A.; Fukuda, T. In Surface-Initiated Polymerization I; Jordan, R., Ed.; Advances in Polymer Science; Springer Berlin Heidelberg, 2006; pp. 1–45.
(12) Zhao, B.; Brittan, W. J. Prog. Polym. Sci. 2000, 25, 677-710
(13) Oyaizu, K.; Nishide, H. Adv. Mater. 2009, 21, 2339–2344.
(14) Suguro, M.; Iwasa, S.; Kusachi, Y.; Morioka, Y.; Nakahara, K. Macromol. Rapid Commun. 2007, 28, 1929–1933.
(15) Nishide, H.; Koshika, K.; Oyaizu, K. Pure Appl. Chem. 2009, 81.
(16) Nesvadba, P.; Bugnon, L.; Maire, P.; Novák, P. Chem. Mater. 2010, 22, 783–788.
(17) polymerization (chemical reaction) http://global.britannica.com/EBchecked/topic/468745/polymerization (accessed May 29, 2014).
(18) Elsen, A. M.; Nicolaÿ, R.; Matyjaszewski, K. Macromolecules 2011, 44, 1752–1754.
(19) Wang, J.-S.; Matyjaszewski, K. J. Am. Chem. Soc. 1995, 117, 5614–5615.
(20) Barbey, R.; Lavanant, L.; Paripovic, D.; Schüwer, N.; Sugnaux, C.; Tugulu, S.; Klok, H.-A. Chem. Rev. 2009, 109, 5437–5527.
(21) Huang, X.; Wirth, M. J. Anal. Chem. 1997, 69, 4577–4580.
(22) Matyjaszewski, K.; Xia, J. Chem. Rev. 2001, 101, 2921–2990.
(23) Belyavskii, S. G.; Mingalev, P. G.; Lisichkin, G. V. Colloid J. 2004, 66, 128–136.
(24) Bao, Z.; Bruening, M. L.; Baker, G. L. Macromolecules 2006, 39, 5251–5258.
(25) Nishide, H.; Iwasa, S.; Pu, Y.-J.; Suga, T.; Nakahara, K.; Satoh, M. Electrochimica Acta 2004, 50, 827–831.
(26) What is an Organic Radical Battery? http://www.wisegeek.com/what-is-an-organic-radical-battery.htm (accessed May 29, 2014).
(27) Biçer, E.; Öktemer, A. Int. J. Electrochem. 2013, 2013, 1–6.
(28) Liu, Y.; Mu, L.; Liu, B.; Kong, J. Chem. - Eur. J. 2005, 11, 2622–2631.
(29) Zhao, B.; Brittain, W. J. Macromolecules 2000, 33, 8813–8820.
(30) Sakaki, S.; Mizoe, N.; Sugimoto, M. Organometallics 1998, 17, 2510–2523.
(31) Hartwig, J. F. Organotransition metal chemistry: from bonding to catalysis; University Science Books: Sausalito, Calif, 2010.
(32) Hung, M.-K.; Wang, Y.-H.; Lin, C.-H.; Lin, H.-C.; Lee, J.-T. J. Mater. Chem. 2012, 22, 1570.
(33) Huang, Q.; Li, J.; Evmenenko, G. A.; Dutta, P.; Marks, T. J. Chem. Mater. 2006, 18, 2431–2442.
(34) Koide, Y.; Such, M. W.; Basu, R.; Evmenenko, G.; Cui, J.; Dutta, P.; Hersam, M. C.; Marks, T. J. Langmuir 2003, 19, 86–93.
(35) Rastogi, A.; Nad, S.; Tanaka, M.; Mota, N. D.; Tague, M.; Baird, B. A.; Abruña, H. D.; Ober, C. K. Biomacromolecules 2009, 10, 2750–2758.
(36) Edwards, J. C. Process NMR Assoc. LLC 87A Sand Pit Rd Danbury CT 2009, 6810.
(37) Kemp, W. Organic spectroscopy; Macmillan: Hampshire; Basingstoke, 1987.
(38) Lau, W. S. Infrared characterization for microelectronics; World Scientific: Singapore ; River Edge, NJ, 1999.
(39) Atkins, P. W.; De Paula, J. Elements of physical chemistry; Oxford University Press: Oxford; New York, 2009.
(40) Tanaka, N.; Ebata, T.; Hashizume, K.; Hosoya, K.; Araki, M. J. Chromatogr. A 1989, 475, 195–208.
(41) Gaborieau, M.; Castignolles, P. Anal. Bioanal. Chem. 2011, 399, 1413–1423.
(42) Trathnigg, B. Prog. Polym. Sci. 1995, 20, 615–650.
(43) Bard, A. J. Electrochemical methods: fundamentals and applications; 2nd ed.; Wiley: New York, 2001.
(44) Electrochemistry Group Linear Sweep / Cyclic Voltammetry http://www.cheng.cam.ac.uk/research/groups/electrochem/JAVA/electrochemistry/ELEC/l4html/cv.html (accessed May 30, 2014).
(45) http://www.comsol.com/blogs/modeling-electroanalysis-cyclic-voltammetry/
(46) Beyerlein, F. H.; Nicholson, R. S. Anal. Chem. 1968, 40, 286–288.
(47) Xu, H.; Zhuang, J.; Chen, Y.; Wu, J.; Zhang, J. RSC Adv. 2014, 4, 15511.
(48) Binnig; Quate; Gerber. Phys. Rev. Lett. 1986, 56, 930–933.
(49) Binnig, G.; Quate, C. F. Phys. Rev. Lett. 1986, 56, 930–933.
(50) http://www.uni-muenster.de/Biologie.AllgmZoo/AG-Linke/pages/general/research/research6.htm
(51) 俄國NT-MDT公司,2003,AFM P47 Pro操作手冊,鎧柏科技譯
(52) Contact Angle platform PAM-SE.htm.
(53) http://mse.nthu.edu.tw/~jch/surface/report/873480/esca.htm
(54) Choi, W.; Harada, D.; Oyaizu, K.; Nishide, H. J. Am. Chem. Soc. 2011, 133, 19839–19843.
(55) Oyaizu, K.; Nishide, H. Adv. Mater. 2009, 21, 2339–2344.
(56) Tielens, F.; Santos, E. J. Phys. Chem. C 2010, 114, 9444–9452.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code