Responsive image
博碩士論文 etd-0523115-095459 詳細資訊
Title page for etd-0523115-095459
論文名稱
Title
北太平洋西側及南海北部中尺度渦流之顆粒態有機碳通量
Mesoscale eddies triggered particulate organic carbon flux in the Western North Pacific and the northern South China Sea
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
189
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-05-22
繳交日期
Date of Submission
2015-06-26
關鍵字
Keywords
渦流、北太平洋西側、南海北部、沉積物收集器、顆粒態有機碳
particulate organic carbon, eddy, Western North Pacific, sediment trap, South China Sea
統計
Statistics
本論文已被瀏覽 6071 次,被下載 121
The thesis/dissertation has been browsed 6071 times, has been downloaded 121 times.
中文摘要
在亞熱帶貧營養鹽的開放性大洋常可觀測到中尺度渦流,渦流能將次表層營養鹽富集的海水輸送至表層,進而刺激生地化循環,提升基礎生產力(primary production, PP)。由於渦流難以觀測,增加了相關研究的困難度,因此對於渦流是否能有效地將大氣中的二氧化碳轉換成有機碳後輾轉輸送至深海埋存,亦即強化生物幫浦的能力,迄今相關研究仍存在著迥異的看法。本研究於2007年5月於北太平洋西側(Western North Pacific, WNP)開放性大洋的副熱帶寡營養鹽海域透光層底部測量了顆粒態有機碳通量(particulate organic carbon flux, POCf),結果顯示暖渦(warm eddy, WE)邊緣的POCf (136–194 mg-C m−2 d−1),明顯高於WNP貧營養鹽海域的參考測站(26–35 mg-C m−2 d−1);2010年6及7月,在WNP的相似海域,亦觀察到了渦流(包含WE及CE,cold eddy,冷渦)邊緣測站較高的POCf (77–124 mg m−2 d−1)。透過掃描式電子顯微鏡影像(scanning electron microscopy)觀察,這些高POCf測站主要的顆粒組成是以較大型藻類的殘骸(如:矽藻)及浮游動物的糞粒為主,表示在WNP的渦流邊緣提供了相對成熟穩定的水團特性,使得較大型的藻類適合生長並刺激了透光層中的生地化循環而產生了較高的POCf。
2013年4和9月及2014年5月於南海(South China Sea, SCS)北部對於渦流的研究結果得知,平均而言CE (50–166 mg-C m−2 d−1)的POCf高於WE (15–25 mg-C m−2 d−1)且渦流的核心區域高於邊緣(CE的核心及邊緣:73–166及50–53 ; WE的核心及邊緣:25及15 mg-C m−2 d−1)。造成CE核心的POCf高值,在SCS北部(即巴士海峽)可能是源於CE核心較邊緣有較充沛的營養鹽輸入刺激了生地化反應;於東南亞時間序列研究SEATS (SouthEast Asian Time-series Study),CE的POCf高值應是由於該CE核心的物理現象,作用於選定測站(CE中心)相較於參考測站(CE邊緣)的時間長(~18日),因此提高了POC通量;而SEATS的WE核心的POCf高值,則可能是透過反氣旋(anticyclonic)流場的物理特性所產生的水平傳輸將邊緣較高之POCf的海水移送至渦流中心。依據水體中顆粒的初步計數及鑑別結果判斷,所觀測到在次表層葉綠素最大值深度中的矽藻數量及其碳含量與POCf顯著的正相關,表示SCS海域中由渦流所產生較高的POCf與較大型浮游植物―矽藻的數量多寡或組成比例有關(如Chaetoceras, Thalassiosira, Nitzschia, Asteromphalus, Coscinodiscus及Pleurosigma)。另外,本研究亦於SEATS測站的WE核心佈放了漂浮式的沉積物收集器深水串列(於水深150、1000、2000及3200 m處),發現POC輸出比(e ratio, POCf / I-PP,透光層中PP的儲量)由淺至深的變化差異不大(POCf分別為25、18、16及15 mg-C m−2 d−1)。由表層海水計數生物源顆粒其表面附著較多細菌群落的顆粒數比例判斷(WE核心及其它測站:32 vs. ~7 %),WE中較高的有機碳儲存效率,可能歸因於較為活躍的細菌作用產生了較多不易被分解的碳有關。除此之外,利用POCf、I-Chl a (透光層中Chl a儲量)及I-PP三者之間的比值關係,即POCf / I-Chl a與e-ratio (POCf / I-Chl a = 10.88 e-ratio + 0.517, n = 19, r2 = 0.85, P < 0.05)於WNP、SCS及其它著名的時間序列測站均呈現良好正向的線性關係,故透過上式,可用以估計較為大範圍的生物幫浦效率。
本研究的結果證明渦流可以在亞熱帶貧營養鹽海域提高POC通量。亦即在副熱帶寡營養鹽海域―WNP及SCS的渦流邊緣及核心區域,渦流透過不同的機制提高了POCf並強化了生物幫浦,雖然以有限的航次無法準確的預期渦流產生高POCf的確切位置及適當時間點,但很顯然地,渦流的確能有效地將碳輸送至深海儲存,在整個海洋碳循環的過程,扮演了碳儲重要的輸送管道。
Abstract
Mesoscale eddies in the subtropical oligotrophic ocean are ubiquitous and play an important role in nutrient supply and oceanic primary production (PP). However, it is still unclear whether these mesoscale eddies can efficiently transfer CO2 from the atmosphere to deep waters via biological pump because of the sampling difficulty due to their transient nature. In May, 2007, particulate organic carbon fluxes (POCf), measured below the euphotic zone at the edge of warm eddy (WE) were 136–194 mg-C m−2 d−1 which was greatly elevated over that (POC flux = 26–35 mg-C m−2 d−1) determined in the nutrient-depleted oligotrophic waters in the Western North Pacific (WNP). In June and July, 2010, higher POCf (77–124 mg-C m−2 d−1) were also observed at the boundary of both WE and cold eddy (CE) in the WNP. The enhanced POCf at the edge of eddies was mainly attributed to both large phytoplankton (e.g. diatom) broken cells and zooplankton fecal pellets based on scanning electron microscopy (SEM) examination.
In April and September, 2013 and May, 2014, researches were conducted in the South China Sea (SCS) for POCf measuring to better understand the effect of carbon pump in eddies (i.e. CE and WE). The POCf was not only higher in the CE than WE (50–166 and 15–25 mg-C m−2 d−1, respectively) but also in cores than edges in those eddies (CE: 73–166 and 50–53; WE: 25 and 15 mg-C m−2 d−1). Raised POCf of the CE’s core in the Bashi Channel could be followed by more nutrients injection in the core rather than the edge (nitrogen, phosphate and silicate inventories within the euphotic zone were 1155、78、1445 and 395、28、536 mmol m−2, respectively). The elevated POCf found in the core of CE at the SouthEast Asian Time-series Study (SEATS) may be attributed to the core effect on the specific station and its nearby water for a longer period. As to the higher POCf in the core than the edge at the SEATS was probably due to the considerable lateral advection caused by anticyclonic mechanisms of the WE. Based on the result of preliminary particles enumeration and identification, it was that the elevated POCf in CEs was contributed by numerous larger phytoplankton (i.e. diatom: Chaetoceras, Thalassiosira, Nitzschia, Asteromphalus, Coscinodiscus and Pleurosigma) according to their significant and positive relationship between the POCf, the abundance and the carbon content. Additionally, we also deployed a deep sediment trap array (at the depth of 150, 1000, 2000 and 3200 m) at SEATS to understand particle transporting efficiency to deep water. The sinking flux of POC were 25、18、16 and 15 mg-C m−2 d−1 at SEATS suggesting that particles could be largely stored in deep water because the e ratio (POCf / I-PP) did not show significantly change. Therefore, the persistent POCf in the WE was possibly due to active microbial loop (e.g. bacteria) and kept more POC in the refractory condition based on the result of preliminary particles enumeration with more bacteria-covered particles in the surface water of the WE’s core site (WE’s core and others were 32 and 7%, respectively). Moreover, the application of POCf, I-Chl a and I-PP (integrated chlorophyll-a and PP within the euphotic zone) to estimate the quantification of biological pump in the subtropical oligotrophic ocean was reliable in accordance with a strong and positive correlation between ratios of POCf / I-Chl a and export ratio.
In conclusion, our result stand in the opposite side to the previous study that the POC flux of the eddy is not important and insignificant in the subtropical Pacific Ocean based on our field observations. The result suggests that mesoscale eddies in the oligotrophic waters, such as the subtropical WNP and SCS, can efficiently increase the oceanic carbon export flux. The edge and core of eddies in the WNP and SCS, respectively, act as a crucial conduit in carbon sequestration to deep waters.
目次 Table of Contents
致謝 i
摘要 ii
Abstract v
目錄 viii
表目錄 x
圖目錄 xi
第1章、前言 - 1 -
1.1 海洋碳循環 - 1 -
1.2 前人研究及文獻探討 - 5 -
1.2.1 貧營養鹽海域的顆粒態有機碳通量 - 5 -
1.2.2 極端天氣事件 - 6 -
1.2.3 自然偶發事件 - 7 -
1.3 研究現況 - 10 -
1.4 研究動機與目的 - 14 -
1.5 論文主要架構 - 18 -
1.6 主要研究方法 - 19 -
1.7 研究內容及立論假設 - 24 -
第2章、研究材料及方法 - 26 -
2.1 研究海域介紹 - 26 -
2.1.1 北太平洋西側開放性大洋 - 27 -
2.1.2 南海 - 28 -
2.1.3 巴士海峽 - 29 -
2.2 採樣方法 - 31 -
2.2.1 海水樣品採集 - 31 -
2.2.2 沉降顆粒收集 - 32 -
2.3 分析方法及資料處理 - 33 -
2.3.1 基本生地化參數處理 - 33 -
2.3.2 顆粒態有機碳的量測與分析 - 35 -
2.3.3 模式估算的衛星資料運用 - 35 -
2.3.3.1 基礎生產力估算 - 35 -
2.3.3.2 衛星資料運用 - 38 -
2.3.4 海水中顆粒物質的計數與分類 - 40 -
2.3.5 垂直擴散係數計算 - 40 -
2.3.6 平均動力高度計算 - 41 -
第3章、結果與討論 - 43 -
3.1 WNP海域水文及生地化參數描述 - 43 -
3.1.1 WNP開放性大洋(K區)水文參數 - 43 -
3.1.2 WNP開放性大洋(K區)生地化參數 - 45 -
3.2 WNP海域POCf輸出機制探討 - 49 -
3.2.1 K區測站垂直營養鹽輸入機制探討 - 49 -
3.2.2 K區測站營養鹽停留時間探討 - 51 -
3.3 WNP海域POCf與其它生地化現象的關係及應用 - 54 -
3.3.1 WNP的POCf與I-Chl a的關係 - 54 -
3.3.2 WNP的POCf與I-PP的關係 - 55 -
3.3.3 北太平洋西側POC通量在海洋碳循環的應用 - 57 -
3.4 NSCS渦流之水文參數及生地化參數 - 61 -
3.4.1 B1–B9測站水文參數描述 - 61 -
3.4.2 SW1–SW11及SC1–SC8測站水文參數描述 - 61 -
3.4.3 B1–B9測站生地化參數描述 - 63 -
3.4.4 SW1–SW11及SC1–SC8測站生地化參數描述 - 66 -
3.5 NSCS的POCf差異之機制探討 - 71 -
3.5.1 渦流的生命週期與生地化反應 - 71 -
3.5.2 渦流的垂直營養鹽輸入機制 - 74 -
3.5.3 浮游植物對POC通量的貢獻 - 76 -
3.6 NSCS海域POCf與其它生地化現象的關係及應用 - 82 -
3.6.1 POC在WE中的保存率 - 82 -
3.6.2 南海POC通量在海洋碳循環的應用 - 85 -
第4章、結論 - 88 -
4.1 北太平洋西側開放性大洋渦流之顆粒態有機碳通量 - 88 -
4.2 南海北部渦流之顆粒態有機碳通量 - 89 -
4.3 本論文研究工作的主要貢獻 - 91 -
4.4 未來研究工作展望 - 93 -
參考文獻 - 94 -
附錄A - 159 -
附錄B - 161 -
參考文獻 References
陳鎮東,1994。海洋化學,國立編譯館,共551頁。
游婉玲,2012。東海南部夏季基礎生產力的短期變化,國立台灣海洋大學碩士論文,共99頁。
黃思瑜,2014。颱風與東北季風對北南海之生地化衝擊,國立中山大學碩士論文,共69頁。
Angel MV, Baker AdeC (1982) Vertical Distribution of the Standing Crop of Plankton and Micronekton at Three Stations in the Northeast Atlantic. Biological Oceanography 2(1): 1-30.
Antia AN (2005) Solubilization of particles in sediment traps: revising the stoichiometry of mixed layer export. Biogeosciences 2(2): 189-204.
Ayukai T, Hattori H (1992). Production and downward flux of zooplankton fecal pellets in the anticyclonic gyre off shikoku, japan. Oceanologica Acta 15(2): 163-172.
Babin SM, Carton JA, Dickey TD, Wiggert JD (2004) Satellite evidence of hurricane-induced phytoplankton blooms in an oceanic desert. Journal of Geophysical Research 109(C3): C03043.
Bacon MP, Cochran JK, Hirschberg D, Hammar TR, Fleer AP (1996) Export flux of carbon at the equator during the EqPac time-series cruises estimated from 234Th measurements. Deep-Sea Research II 43(4-6): 1133-1153.
Banse K (1994) On the coupling of hydrography, phytoplankton, zooplankton, and settling organic particles offshore in the Arabian Sea, in Biogeochemistry of the Arabian Sea, edited by D. Lal, Indian Acad. of Sci., Bangalore: pp. 125– 161.
Benitez-Nelson CR, Bidigare RR, Dickey TD, Landry MR, Leonard CL, Brown SL, Nencioli F, Rii YM, Maiti K, Becker JW, Bibby TS, Black W, Cai WJ, Carlson CA, Chen F, Kuwahara VS, Mahaffey C, McAndrew PM, Quay PD, Rappé MS, Selph KE, Simmons MP, Yang EJ (2007) Mesoscale eddies drive increased silica export in the subtropical Pacific Ocean. Science 316(5827): 1017-1021.
Behrenfeld MJ, Falkowski PG (1997a) Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnology and Oceanography 42(1): 1-20.
Behrenfeld MJ, Falkowski PG (1997b) A consumer's guide to phytoplankton primary productivity models. Limnology and Oceanography 42(7): 1479-1491.
Bidigare RR, Benitez-Nelson C, Leonard CL, Quay PD, Parsons ML, Foley DG, Seki MP (2003) Influence of a cyclonic eddy on microheterotroph biomass and carbon export in the lee of Hawaii. Geophysical Research Letters 30(6): 1318.
Buesseler KO (1998) The decoupling of production and particulate export in the surface ocean. Global Biogeochemical Cycles 12(2): 297-310.
Buesseler KO, Bacon MP, Cochran JK, Livingston HD (1992) Carbon and nitrogen export during the JGOFS North Atlantic Bloom experiment estimated from 234Th: 238U disequilibria. Deep Sea Research 39(7–8): 1115-1137.
Buesseler KO, Steinberg DK, Michaels AF, Johnson RJ, Andrews JE, Valdes JR, Price JF (2000) A comparison of the quantity and composition of material caught in a neutrally buoyant versus surface-tethered sediment trap. Deep Sea Research I 47(2): 277-294.
Buesseler KO, Benitez-Nelson CR, Moran SB, Burd A, Charette M, Cochran JK, Coppola L, Fisher NS, Fowler SW, Gardner WD, Guo LD, Gustafsson Ö, Lamborg C, Masque P, Miquel JC, Passow U, Santschi PH, Savoye N, Stewart G, Trull T (2006) An assessment of particulate organic carbon to thorium-234 ratios in the ocean and their impact on the application of 234Th as a POC flux proxy. Marine Chemistry 100(3–4): 213-233.
Buesseler KO, Antia AN, Chen M, Fowler SW, Gardner WD, Gustafsson O, Harada K, Michaels AF, van der Loeff MR, Sarin M, Steinberg DK, Trull T (2007) An assessment of the use of sediment traps for estimating upper ocean particle fluxes. Journal of Marine Research 65(3): 345-416.
Buesseler KO, Lamborg C, Cai P, Escoube R, Johnson R, Pike S, Masque P, McGillicuddy D, Verdeny E (2008) Particle fluxes associated with mesoscale eddies in the Sargasso Sea. Deep Sea Research II 55(10–13): 1426-1444.
Cermeño P, Estévez-Blanco P, Marañón E, Fernóndez Emilio (2005a) Maximum photosynthetic efficiency of size-fractionated phytoplankton assessed by 14C uptake and fast repetition rate fluorometry. Limnology and Oceanography 50(5): 1438-1446.
Cermeño P, Marañón E, Rodríguez J, Fernández E (2005b) Large-sized phytoplankton sustain higher carbon-specific photosynthesis than smaller cells in a coastal eutrophic ecosystem. Marine Ecology Progress Series 297: 51-60.
Chang J, Chung CC, Gong GC (1996) Influences of cyclones on chlorophyll a concentration and Synechococcus abundance in a subtropical western Pacific coastal ecosystem. Marine Ecology Progress Series 140(1): 199-205.
Chang MH, Tang TY, Ho CR, Chao SY (2013) Kuroshio-induced wake in the lee of Green Island off Taiwan. Journal of Geophysical Research 118 (3): 1508-1519.
Chelton DB (2001) Report of the high-resolution ocean topography science working group meeting: 19 pp.
Chelton DB, Schlax MG, Samelson RM, de Szoeke RA (2007) Global observations of large oceanic eddies. Geophysical Research Letters 34(15): L15606.
Chelton DB, Gaube P, Schlax MG, Early JJ, Samelson RM (2011) The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science 334(6054): 328-332.
Chen CTA (1996) The Kuroshio intermediate water is the major source of nutrients on the East China Sea continental shelf. Oceanologica Acta 19(5): 523-527.
Chen CTA (2011) Microbial carbon pump: additional considerations. Nature Review Microbiology 9(7): 555-555.
Chen CTA, Wang SL (1996) Carbon and nutrient budgets on the East China Sea continental shelf. In: Tsunogai S (Ed.), Proceedings of the international marine science symposium, Mutsu, Japan: 169-186.
Chen, C.-T. A., C. T. Liu, and S. C. Pai (1995a), Variations in oxygen,
nutrient and carbonate fluxes of the Kuroshio current, La Mer, 33, 161–
176.
Chen, C.-T. A., C. T. Liu, and S. C. Pai (1995a), Variations in oxygen,
nutrient and carbonate fluxes of the Kuroshio current, La Mer, 33, 161–
176.
Chen CTA, Liu CT, Pai SC (1995) Variation in oxygen, nutrient and carbonate fluxes of the Kuroshio Current. La mer 33(3): 161-176.
Chen CTA, Wang SL, Wang BJ, Pai SC (2001) Nutrient budgets for the South China Sea basin. Marine Chemistry 75(4): 281-300.
Chen F (2013) Hydrology, ecology, and environment of Kuroshio waters. In: The Kuroshio power plant. Lecture Notes in Energy. Springer International Publishing: 1-31.
Chen KS, Hung CC, Gong GC, Chou WC, Chung CC, Shih YY, Wang CC (2013) Enhanced POC export in the oligotrophic northwest Pacific Ocean after extreme weather events. Geophysical Research Letters 40(21): 2013GL058300.
Chen YLL (2005) Spatial and seasonal variations of nitrate-based new production and primary production in the South China Sea. Deep-Sea Research I 52(2): 319-340.
Chen YLL, Chen HY (2006) Seasonal dynamics of primary and new production in the northern South China Sea: The significance of river discharge and nutrient advection. Deep Sea Research I 53(6): 971-986.
Chen YLL, Chen HY, Lin YH (2003) Distribution and downward flux of Trichodesmium in the South China Sea as influenced by the transport from the Kuroshio Current. Marine Ecology Progress Series 259: 47-57.
Chen YLL, Chen HY, Karl DM, Takahashi M (2004) Nitrogen modulates phytoplankton growth in spring in the South China Sea. Continental Shelf Research 24(4–5): 527-541.
Chen YLL, Chen HY, Lin II, Lee MA, Chang J (2007) Effects of cold eddy on phytoplankton production and assemblages in Luzon strait bordering the South China Sea. Journal of Oceanography 63(4): 671-683.
Chen YLL, Chen HY, Tuo SH, Ohki K (2008) Seasonal dynamics of new production from Trichodesmium N2 fixation and nitrate uptake in the upstream Kuroshio and South China Sea basin. Limnology and Oceanography 53(5): 1705-1721.
Chen YLL, Chen HY, Jan S, Tuo SH (2009) Phytoplankton productivity enhancement and assemblage change in the upstream Kuroshio after typhoons. Marine Ecology Progress Series 385: 111-126.
Chen YLL, Tuo SH, Chen HY (2011) Co-occurrence and transfer of fixed nitrogen from Trichodesmium spp. to diatoms in the low-latitude Kuroshio Current in the NW Pacific. Marine Ecology Progress Series 421: 25-38.
Chisholm SW (2000) Oceanography: Stirring times in the Southern Ocean. Nature 407(6805): 685-687.
Chou WC, Chen YLL, Sheu DD, Shih YY, Han CA, Cho CL, Tseng CM, Yang YJ (2006) Estimated net community production during the summertime at the SEATS time-series study site, northern South China Sea: Implications for nitrogen fixation. Geophysical Research Letters 33(22): L22610.
Coale KH, Bruland KW (1985) 234Th / 238U disequilibria within the California Current. Limnology and Oceanography 30(1): 22-33.
Cochran JK, Barnes C, Achman D, Hirschberg DJ (1995) Thorium-234/uranium-238 disequilibrium as an indicator of scavenging rates and participate organic carbon fluxes in the Northeast Water Polynya, Greenland. Journal of Geophysical Research 100(C3): 4399-4410.
Coppola L, Roy-Barman M, Wassmann P, Mulsow S, Jeandel C (2002) Calibration of sediment traps and particulate organic carbon export using 234Th in the Barents Sea. Marine Chemistry 80(1): 11-26.
Dall'Olmo G, Mork KA (2014) Carbon export by small particles in the Norwegian Sea. Geophysical Research Letters 41(8): 2921-2927.
Denman KL, Gargett AE (1983) Time and space scales of vertical mixing and advection of phytoplankton in the upper ocean. Limnology and Oceanography 28 (5): 801-815.
Evangeliou N, Florou H, Scoullos M (2011) POC and particulate 234Th export fluxes estimated using 234Th/238U disequilibrium in an enclosed Eastern Mediterranean region (Saronikos Gulf and Elefsis Bay, Greece) in seasonal scale. Geochimica et Cosmochimica Acta 75(19): 5367-5388.
Ewart CS, Meyers MK, Wallner ER, McGillicuddy DJ, Carlson CA (2008) Microbial dynamics in cyclonic and anticyclonic mode-water eddies in the northwestern Sargasso Sea. Deep Sea Research II 55: 1334-1347.
Falkowski PG (2002) The ocean’s invisible forest. Scientific American 287(2): 54–61.
Feely RA, Sabine CL, Takahashi T, Wanninkhof R (2001) Uptake and storage of carbon dioxide in the ocean: The global CO2 survey. Oceanography 14(4):18–32.
Fowler SW, Knauer GA (1986) Role of large particles in the transport of elements and organic compounds through the oceanic water column. Progress in Oceanography 16(3): 147-194.
Gardner WD (1980) Sediment trap dynamics and calibration: A laboratory evaluation. Journal of Marine Research 38: 17-39.
Gardner WD (1985) The effect of tilt on sediment trap efficiency. Deep Sea Research 32(3): 349-361.
Gong GC, Liu GJ (2003) An empirical primary production model for the East China Sea. Continental Shelf Research 23(2): 213-224.
Gong GC, Liu KK, Liu CT, Pai SC (1992) The chemical hydrography of the South China Sea west of Luzon and a comparison with the west Philippine Sea. Terrestrial Atmospheric and Oceanic Sciences 3(4): 587-602.
Gong GC, Liu KK, Pai SC (1995a) Prediction of nitrate concentration from two end member mixing in the southern East China Sea. Continental Shelf Research 15(7): 827-842.
Gong GC, Yang WR, Chang J (1995b) In vivo fluorescence-derived Chl a concentration in the southern East China Sea. Acta Oceanographica Taiwanica 34: 73-85.
Gong GC, Chen YL, Liu KK (1996) Summertime hydrography and chlorophyll a distribution in the East China Sea in summer: Implications of nutrient dynamics. Continental Shelf Research 16: 1561-1590.
Gong GC, Chang J, Wen YH (1999) Estimation of annual primary production in the Kuroshio waters northeast of Taiwan using a photosynthesis-irradiance model. Deep Sea Research Part I 46(1): 93-108.
Gordon DC (1971) Distributions of particulate organic carbon and nitrogen at an oceanic station in the central Pacific. Deep-Sea Research 18: 1127-1134.
Gruber N, Keeling CD, Stocker TF (1998) Carbon-13 constraints on the seasonal inorganic carbon budget at the BATS site in the northwestern Sargasso Sea. Deep-Sea Research I, 45, 673-717.
Guo L, Hung CC, Santschi PH, Walsh ID (2002) 234Th scavenging and its relationship to acid polysaccharide abundance in the Gulf of Mexico. Marine Chemistry 78(2–3): 103-119.
Hargrave BT, Burns NM (1979) Assessment of sediment trap collection efficiency. Limnology and Oceanography 24(6): 1124-1136.
Henson SA, Sanders R, Madsen E, Morris PJ, Le Moigne F, Quartly GD (2011) A reduced estimate of the strength of the ocean’s biological carbon pump. Geophysical Research Letters 38(4): L04606.
Heussner S, Ratti C, Carbonne J (1990) The PPS-3 time-series sediment trap and the trap sample processing techniques used during the ECOMARGE EXPERIMENT. Continental Shelf Research 10(9-11): 943-958.
Hinata T (1996) Seasonal variation and long-term trends of the oceanographic conditions along a fixed hydrographic line crossing the Kuroshio in the East China Sea. Oceanography Magazine 45: 9-32.
Hung CC, Gong GC (2007) Export flux of POC in the main stream of the Kuroshio. Geophysical Research Letters 34(18): L18606.
Hung CC, Gong GC (2010) POC/234Th ratios in particles collected in sediment traps in the northern South China Sea. Estuarine Coastal and Shelf Science 88(3): 303-310.
Hung CC, Gong GC (2011) Biogeochemical responses in the southern East China Sea after typhoons. Oceanography 24(4): 42-51.
Hung CC, Wong GT, Liu KK, Shiah FK, Gong GC (2000) The effects of light and nitrate levels on the relationship between nitrate reductase activity and 15NO3− uptake: field observations in the East China Sea. Limnology and Oceanography 45 (4), 836-848.
Hung CC, Guo L, Santschi PH, Alvarado-Quiroz N, Haye JM (2003a) Distributions of carbohydrate species in the Gulf of Mexico. Marine Chemistry 81(3–4): 119-135.
Hung CC, Guo LD, Schultz GE, Pinckney JL, Santschi PH (2003b) Production and flux of carbohydrate species in the Gulf of Mexico. Global Biogeochemical Cycles 17(2): 1055.
Hung CC, Guo LD, Roberts KA, Santschi PH (2004) Upper ocean carbon flux determined by the 234Th approach and sediment traps using size-fractionated POC and 234Th data from the Gulf of Mexico. Geochemical Journal 38(6): 601-611.
Hung CC, Gong GC, Chung WC, Kuo WT, Lin FC (2009) Enhancement of particulate organic carbon export flux induced by atmospheric forcing in the subtropical oligotrophic northwest Pacific Ocean. Marine Chemistry 113(1-2): 19-24.
Hung CC, Gong GC, Chou WC, Chung CC, Lee MA, Chang Y, Chen HY, Huang SJ, Yang Y, Yang WR, Chung WC, Li SL, Laws E (2010a) The effect of typhoon on particulate organic carbon flux in the southern East China Sea. Biogeosciences 7: 3007-3018. doi:10.5194/bg-7-3007-2010.
Hung CC, Xu C, Santschi PH, Zhang SJ, Schwehr KA, Quigg A, Guo LD, Gong GC, Pinckney JL, Long RA, Wei CL (2010b) Comparative evaluation of sediment trap and 234Th-derived POC fluxes from the upper oligotrophic waters of the Gulf of Mexico and the subtropical northwestern Pacific Ocean. Marine Chemistry 121(1-4): 132-144.
Hung CC, Gong GC, Santschi PH (2012) 234Th in different size classes of sediment trap collected particles from the Northwestern Pacific Ocean. Geochimica et Cosmochimica Acta 91: 60-74.
Hung JJ, Wang SM, Chen YLL (2007) Biogeochemical controls on distributions and fluxes of dissolved and particulate organic carbon in the Northern South China Sea. Deep Sea Research II 50(14-15): 1486-1503.
Iversen MH, Poulsen LK (2007) Coprorhexy, coprophagy, and coprochaly in the copepods Calanus helgolandicus, Pseudocalanus elongatus, and Oithona similis. Marine Ecology Progress Series 350: 79-89.
Jia Y, Liu Q (2004) Eddy shedding from the Kuroshio bend at Luzon Strait. Journal of Oceanography 60(6): 1063-1069.
Kameda T, Ishizaka J (2005) Size-fractionated primary production estimated by a two-phytoplankton community model applicable to ocean color remote sensing. Journal of Oceanography 61(4): 663-672.
Kara AB, Rochford PA, Hurlburt HE (2000) An optimal definition for ocean mixed layer depth. Journal of Geophysical Research 105 (C7): 16803-16821.
Karl DM, Christian JR, Dore JE, Hebel DV, Letelier RM, Tupas LM, Winn CD (1996) Seasonal and interannual variability in primary production and particle flux at Station ALOHA. Deep Sea Research II 43: 539–568.
Karl D, Bates N, Emerson S, Harrison P, Jeandel C, Llinâs O, Liu KK, Marty JC, Michaels A, Miquel J, Neuer S, Nojiri Y, Wong C (2003) Temporal studies of biogeochemical processes determined from ocean time-series observations during the JGOFS era. in: Fasham MR (ed) Ocean Biogeochemistry. Global Change–The IGBP Series (closed). Springer Berlin Heidelberg. p 239-267.
Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge, England: 509 pp.
Klein P, Lapeyre G (2009) The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Annual review of Marine Science I: 351-375.
Knauer GA, Karl DM, Martin JH, Hunter CN (1984) In situ effects of selected preservatives on total carbon, nitrogen and metals collected in sediment traps. Journal of Marine Research 42(2): 445-462.
Ko DS, Chao SY, Huang P, Lin SF (2009) Anomalous upwelling in Nan Wan: July 2008. Terrestrial Atmospheric and Oceanic Sciences 20: 839-852.
Kobari T, Kitamura M, Minowa M, Isami H, Akamatsu H, Kawakami H, Matsumoto K, Wakita M, Honda MC (2013) Impacts of the wintertime mesozooplankton community to downward carbon flux in the subarctic and subtropical Pacific Oceans. Deep Sea Research I 81(0): 78-88.
Ku TL, Knauss KG, Mathieu GG (1977) Uranium in open ocean: concentration and isotopic composition. Deep Sea Research 24(11): 1005-1017.
Laws EA, Falkowski PG, Smith WO, Ducklow H, McCarthy JJ (2000) Temperature effects on export production in the open ocean. Global Biogeochemical Cycles 14(4): 1231-1246.
Le Quéré C, Andres RJ, Andrew RM, Boden T, Ciais P, Friedlingstein P, Houghton RA, Marland G, Moriarty R, Sitch S, Tans P, Arneth A, Arvanitis A, Bakker DCE, Bopp L, Canadell JG, Chini LP, Doney SC, Harper A, Harris I, House JI, Jain AK, Jones SD, Kato E, Keeling RF, Klein Goldewijk K, Körtzinger A, Koven C, Lefèvre N, Omar A, Ono T, Park GH, Pfeil B, Poulter B, Raupach MR, Regnier P, Rödenbeck C, Saito S, Schwinger J, Segschneider J, Stocker BD, Tilbrook B, van Heuven S, Viovy N, Wanninkhof R, Wiltshire A, Zaehle S, Yue C (2013) Global carbon budget 2013. Earth System Science Data Discussion 6(2): 689-760.
Lee C, Hedges JI, Wakeham SG, Zhu N (1992) Effectiveness of various treatments in retarding microbial activity in sediment trap material and their effects on the collection of swimmers. Limnology and Oceanography 37(1): 117-130.
Lee C, Wakeham S, Arnosti C (2004) Particulate organic matter in the sea: The composition conundrum. Ambio 33(8): 565-575.
Lee IH, Ko D, Wang YH, Centurioni L, Wang DP (2013) The mesoscale eddies and Kuroshio transport in the western North Pacific east of Taiwan from 8-year (2003–2010) model reanalysis. Ocean Dynamics 63(9-10): 1027-1040.
Lepore K, Moran SB, Burd AB, Jackson GA, Smith JN, Kelly RP, Kaberi H, Stavrakakis S, Assimakopoulou G (2009) Sediment trap and in-situ pump size-fractionated POC/234Th ratios in the Mediterranean Sea and Northwest Atlantic: Implications for POC export. Deep-Sea Research I 56(4): 599-613.
Lewis MR, Harrison WG, Oakey NS, Hebert D, Platt T (1986) Vertical nitrate fluxes in the oligotrophic ocean. Science 234(4778): 870–873.
Li L, Nowlin Jr WD, Jilan S (1998) Anticyclonic rings from the Kuroshio in the South China Sea. Deep Sea Research I 45(9): 1469-1482.
Lin HL, Wang WC, Hung GW (2004) Seasonal variation of planktonic foraminiferal isotopic composition from sediment traps in the South China Sea. Marine Micropaleontology 53(3–4): 447-460.
Lin HL, Sheu DD, Yang Y, Chou WC, Hung GW (2011) Stable isotopes in modern planktonic foraminifera: Sediment trap and plankton tow results from the South China Sea. Marine Micropaleontology 79(1-2): 15-23.
Lin I, Liu WT, Wu CC, Wong GTF, Hu CM, Chen ZQ, Liang WD, Yang Y, Liu KK (2003) New evidence for enhanced ocean primary production triggered by tropical cyclone. Geophysical Research Letters 30(13): 1718.
Liu CT, Cheng SP, Chuang WS, Yang Y, Lee T, Johns W, Li HW (1998) Mean structure and transport of Taiwan Current (Kuroshio). Acta Oceanographica Taiwanica 36: 159-176.
Liu H, Chang J, Tseng CM, Wen LS, Liu KK (2007) Seasonal variability of picoplankton in the Northern South China Sea at the SEATS station. Deep Sea Research II 54(14-15): 1602-1616.
Liu KK, Gong GC, Lin S, Wang CY, Wei CL, Chao SY (1992) The year-round upwelling at the shelf break near the northern tip of Taiwan as evidenced by chemical hydrography. Terrestrial Atmospheric and Oceanic Sciences 3(3): 243-275.
Liu KK, Lai ZL, Gong GC, Shiah FK (1995) Distribution of particulate organic matter in the southern East China Sea: implications in production and transport. Terrestrial, Atmospheric and Oceanic Sciences 6 (1): 27-45.
Liu KK, Chao SY, Shaw PT, Gong GC, Chen CC, Tang TY (2002) Monsoon-forced chlorophyll distribution and primary production in the South China Sea: observations and a numerical study. Deep Sea Research I 49(8): 1387-1412.
Liu KK, Chen YJ, Tseng CM, Lin II, Liu HB, Snidvongs A (2007) The significance of phytoplankton photo-adaptation and benthic–pelagic coupling to primary production in the South China Sea: Observations and numerical investigations. Deep Sea Research II 54(14–15): 1546-1574.
Lutz M, Dunbar R, Caldeira K (2002) Regional variability in the vertical flux of particulate organic carbon in the ocean interior. Global Biogeochemical Cycles 16(3): GB001383.
Mahadevan A, Thomas LN, Tandon A (2008) Comment on “eddy / wind interactions stimulate extraordinary Mid-Ocean plankton blooms”. Science 320(5875): 448.
Marañón E, Behrenfeld MJ, González N, Mouriño B, Zubkov MV (2003) High variability of primary production in oligotrophic waters of the Atlantic Ocean: Uncoupling from phytoplankton biomass and size structure. Marine Ecology Progress Series 257(1): 1–11.
Martin AP, Richards KJ (2001) Mechanisms for vertical nutrient transport within a North Atlantic mesoscale eddy. Deep Sea Research Part II 48(4–5): 757-773.
Martin JH, Knauer GA, Karl DM, Broenkow WW (1987) VERTEX: carbon cycling in the northeast Pacific. Deep Sea Research A 34(2): 267-285.
McGillicuddy DJ, Robinson AR, Siegel DA, Jannasch HW, Johnson R, Dickey TD, McNeil J, Michaels AF, Knap AH (1998) Influence of mesoscale eddies on new production in the Sargasso Sea. Nature 394(6690): 263-266.
McGillicuddy DJ, Anderson LA, Bates NR, Bibby T, Buesseler KO, Carlson CA, Davis CS, Ewart C, Falkowski PG, Goldthwait SA, Hansell DA, Jenkins WJ, Johnson R, Kosnyrev VK, Ledwell JR, Li QP, Siegel DA, Steinberg DK (2007) Eddy/wind interactions stimulate extraordinary Mid-Ocean plankton blooms. Science 316(5827): 1021-1026.
Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnology and Oceanography 45(3): 569-579.
Metzger EJ, Hurlburt HE (2001) The nondeterministic nature of Kuroshio penetration and eddy shedding in the South China Sea. Journal of Physical Oceanography 31(7): 1712-1732.
Michaels AF (2007) Highly Active Eddies. Science 316(5827): 992-993.
Morel A, Maritorena S (2001) Bio-optical properties of oceanic waters: A reappraisal. Journal of Geophysical Research 106 (C4): 7163-7180.
Morton B, Blackmore G (2001) South China Sea. Marine Pollution Bulletin 42(12): 1236-1263.
Murray JW, Young J, Newton J, Dunne J, Chapin T, Paul B, McCarthy JJ (1996) Export flux of particulate organic carbon from the central equatorial Pacific determined using a combined drifting trap-234Th approach. Deep Sea Research II 43(4–6): 1095-1132.
Neuer S, Davenport R, Freudenthal T, Wefer G, Llinás O, Rueda MJ, Steinberg DK, Karl DM (2002) Differences in the biological carbon pump at three subtropical ocean sites. Geophysical Research Letters 29(18): 1885.
Nitani H (1972) Beginning of the Kuroshio. In: Stommel H, Yoshida K (Eds.), Kuroshio. University of Washington Press, Seattle, USA: 129–163.
Oka E, Qiu B (2012) Progress of North Pacific mode water research in the past decade. Journal of Oceanography 68(1): 5-20.
Olenina I, Hajdu S, Edler L, Andersson A, Wasmund N, Busch S, Göbel J, Gromisz S, Huseby S, Huttunen M, Jaanus A, Kokkonen P, Ledaine I, Niemkiewicz E (2006) Biovolumes and size-classes of phytoplankton in the Baltic Sea. Helcom Baltic Sea Environment Proceedings 106: 144pp.
Oschlies A (2002) Can eddies make ocean deserts bloom? Global Biogeochemical Cycles 16(4): 1106.
Oschlies A, Garcon V (1998) Eddy-induced enhancement of primary production in a model of the North Atlantic Ocean. Nature 394(6690): 266-269.
Oudot C (1989) O2 and CO2 balances approach for estimating biological production in the mixed layer of the tropical Atlantic Ocean (Guinea Dome area). Journal of Marine Research 47: 385-409.
Pai SC, Yang CC, Riley JP (1990a) Formation kinetics of the pink azo dye in the determination of nitrite in natural waters. Analytica Chimica Acta 232(0): 345-349.
Pai SC, Yang CC, Riley JP (1990b) Effects of acidity and molybdate concentration on the kinetics of the formation of the phosphoantimonylmolybdenum blue complex. Analytica Chimica Acta 229(0): 115-120.
Parsons TR, Maita Y, Lalli CM (1984a) A manual of chemical and biological methods for seawater analysis. Pergamon Press, New York, USA: 173 pp.
Parsons TR, Takahashi M, Hargrave B (1984b) Biological oceanographic processes. Pergamon Press, New York, USA: 330 pp.
Peck RM (1972) Efficiency tests on the Tauber trap used as a pollen sampler in turbulent water flow. New Phytologist 71(1): 187-198.
Peterson M, Hernes P, Thoreson D, Hedges J, Lee C, Wakeham S (1993) Field evaluation of a valved sediment trap. Limnology and Oceanography 38(8): 1741-1761.
Peterson TD, Whitney FA, Harrison PJ (2005) Macronutrient dynamics in an anticyclonic mesoscale eddy in the Gulf of Alaska. Deep Sea Research II 52(7–8): 909-932.
Quay P, Stutsman J (2003) Surface layer carbon budget for the subtropical N. Pacific: δ13C constraints at station ALOHA. Deep-Sea Research I, 50, 1045-1061.
Redfield AC, Ketchum BH, Richard FA (1963) The influnence of organisms on the composition of sea water. In: Hill MN (ed), The Sea (2), Interscience, New York: 26-77.
Santschi PH, Hung CC, Schultz G, Alvarado-Quiroz N, Guo L, Pinckney J, Walsh I (2003) Control of acid polysaccharide production and 234Th and POC export fluxes by marine organisms. Geophysical Research Letters 30(2): 1044.
Santschi PH, Murray JW, Baskaran M, Benitez-Nelson CR, Guo LD, Hung CC, Lamborg C, Moran SB, Passow U, Roy-Barman M (2006) Thorium speciation in seawater. Marine Chemistry 100(3–4): 250-268.
Sarmiento JL, Murnane R, Le Quéré C (1995) Air-sea CO2 transfer and the carbon budget of the North-Atlantic. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 348(1324): 211-219.
Sarmiento JL, Hughes TMC, Stouffer RJ, Manabe S (1998) Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393: 245–249.
Schimel DS (1995) Terrestrial ecosystems and the carbon cycle. Global Change Biology 1(1): 77-91.
Shang SL, Li L, Sun FQ, Wu JY, Hu CM, Chen DW, Ning XR, Qiu Y, Zhang CY, Shang SP (2008) Changes of temperature and bio-optical properties in the South China Sea in response to Typhoon Lingling, 2001. Geophysical Research Letters 35(10): L10602.
Siegenthaler U, Sarmiento JL (1993) Atmospheric carbon dioxide and the ocean. Nature 365(6442): 119-125.
Spahni R, Chappellaz J, Stocker TF, Loulergue L, Hausammann G, Kawamura K, Flückiger J, Schwander J, Raynaud D, Masson-Delmotte V, Jouzel J (2005) Atmospheric methane and nitrous oxide of the Late Pleistocene from Antarctic ice cores. Science 310(5752): 1317-1321.
Stanley RHR, Buesseler KO, Manganini SJ, Steinberg DK, Valdes JR (2004) A comparison of major and minor elemental fluxes collected in neutrally buoyant and surface-tethered sediment traps. Deep Sea Research I 51(10): 1387-1395.
Steinberg DK, Goldthwait SA, Hansell DA (2002) Zooplankton vertical migration and the active transport of dissolved organic and inorganic nitrogen in the Sargasso Sea. Deep Sea Research I 49(8): 1445-1461.
Stewart RH (1997) Introduction to physical Oceanography, Department of Oceanography, Texas A&M University. http://oceanworld.tamu.edu/resources/ocng _textbook/contents.html
Stramma L, Bange HW, Czeschel R, Lorenzo A, Frank M (2013) On the role of mesoscale eddies for the biological productivity and biogeochemistry in the eastern tropical Pacific Ocean off Peru. Biogeosciences 10(11): 7293-7306.
Strickland JDH, Parsons TR (1972) A practical handbook of seawater analysis. Fisheries Research Board of Canada, Ottawa, Canada: 310 pp.
Sudre J, Yahia H, Pont O, Garçon V (2015) Ocean turbulent dynamics at super resolution from optimal multiresolution analysis and multiplicative cascade. IEEE Transactions on Geoscience and Remote Sensing 2015: TGRS-2014-00385. R2.
Sweeney EN, McGillicuddy Jr DJ, Buesseler KO (2003) Biogeochemical impacts due to mesoscale eddy activity in the Sargasso Sea as measured at the Bermuda Atlantic Time-series Study (BATS). Deep Sea Research II 50(22–26): 3017-3039.
Takahashi M, Bienfang PK (1983) Size structure of phytoplankton biomass and photosynthesis in subtropical Hawaiian waters. Marine Biology 76(2): 203-211.
Tian J, Yang Q, Liang X, Xie L, Hu D, Wang F, Qu T (2006) Observation of Luzon Strait transport. Geophysical Research Letters 33(19): L19607.
Tuo SH, Chen YLL, Chen HY (2014) Low nitrate availability promotes diatom diazotroph associations in the marginal seas of the western Pacific. Aquatic Microbial Ecology 73(2): 135-150.
Usbeck R (1999) Modeling of marine biogeochemical cycles with an emphasis on vertical particle fluxes. Reports on Polar Research 332: 105 pp.
Vaulot D (2001) Phytoplankton. In: Encyclopedia of Life Sciences, Macmillan Publishers Ltd, Nature Publishing Group: 1-7.
Verdeny E, Masqué P, Maiti K, Garcia-Orellana J, Bruach JM, Mahaffey C, Benitez-Nelson CR (2008) Particle export within cyclonic Hawaiian lee eddies derived from 210Pb–210Po disequilibrium. Deep Sea Research II 55(10–13): 1461-1472.
Wei CL, Murray JW (1992) Temporal variations of 234Th activity in the water column of Dabob Bay: Particle scavenging. Limnology and Oceanography 37(2): 296-314.
Wei CL, Hung CC (1998) Particle scavenging in the upper water column off Mindoro Island, Philippine: 234Th/238U disequilibria. Estuarine Coastal and Shelf Science 46(3): 351-358.
Wei CL, Lin SY, Sheu DD, Chou WC, Yi MC, Santschi PH, Wen LS (2011) Particle-reactive radionuclides (234Th, 210Pb, 210Po) as tracers for the estimation of export production in the South China Sea. Biogeosciences 8(12): 3793-3808.
Welschmeyer NA, Naughton SL (1994) Improved chlorophyll a analysis: single fluorometric measurement with no acidification. Lake and reservoir management 9: 123.
Wilson SE, Steinberg DK, Buesseler KO (2008) Changes in fecal pellet characteristics with depth as indicators of zooplankton repackaging of particles in the mesopelagic zone of the subtropical and subarctic North Pacific Ocean. Deep Sea Research II 55(14-15): 1636-1647.
Wong GTF, Ku TL, Mulholland M, Tseng CM, Wang DP (2007) The SouthEast Asian Time-series Study (SEATS) and the biogeochemistry of the South China Sea - An overview. Deep-Sea Research II 54(14-15): 1434-1447.
Xiu P, Chai F (2011) Modeled biogeochemical responses to mesoscale eddies in the South China Sea. Journal of Geophysical Research 116(C10): C10006.
Xiu P, Chai F, Shi L, Xue H, Chao Y (2010) A census of eddy activities in the South China Sea during 1993–2007. Journal of Geophysical Research 115(C3): C03012.
Xiu P, Palacz AP, Chai F, Roy EG, Wells ML (2011) Iron flux induced by Haida eddies in the Gulf of Alaska. Geophysical Research Letters 38(13): L13607
Yang Y, Liu CT, Hu JH, Koga M (1999) Taiwan Current (Kuroshio) and impinging eddies. Journal of Oceanography 55(5): 609-617.
Yang Y, Liu CT (2003) Uncertainty reduction of estimated geostrophic volume transports with altimeter observations east of Taiwan. Journal of Oceanography 59(2): 251-257.
Zhou K, Dai M, Kao SJ, Wang L, Xiu P, Chai F, Tian J, Liu Y (2013) Apparent enhancement of 234Th-based particle export associated with anticyclonic eddies. Earth and Planetary Science Letters 381: 198-20.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code