Responsive image
博碩士論文 etd-0523116-131654 詳細資訊
Title page for etd-0523116-131654
論文名稱
Title
比較臭氧、生物活性碳濾床與中空纖維薄膜方法處理水中鹵化乙酸處理效率之研究
Comparison of haloacetic acids treatment efficiency using Ozonation, BACF and hollow fiber membrane methods
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
140
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-02
繳交日期
Date of Submission
2016-06-23
關鍵字
Keywords
臭氧、生物活性碳濾床、中空纖維薄膜、鹵化乙酸
ultra-filtration, Ozone, haloacetic acids, biological activated carbon filters
統計
Statistics
本論文已被瀏覽 5689 次,被下載 0
The thesis/dissertation has been browsed 5689 times, has been downloaded 0 times.
中文摘要
本研究比較臭氧與生物活性碳濾床(BACF)與超過濾薄膜(UF)方法處理原水過量鹵化乙酸(HAA)之去除效能。文中探討處理後出水鹵化乙酸(HAA)濃度變化與操作參數之影響,並利用各項水質項目進行統計分析,建立鹵化乙酸(HAA)之經驗方程式,最後並以預測值與實際量測值來驗證經驗方程式之相關係數,實驗參數主要包括臭氧劑量與空床停留時間(EBCT)。
結果顯示原水經臭氧及BACF之處理後出水或原水經BACF處理後皆可有效降低原水HAA,前者組合方法之去除率較後者單一BACF約增加10%。BACF組合UF之模組,在HAA去除效率上,當BACF操作在EBCT為50 min時,處理後出水鹵化乙酸(HAA)去除效率最佳。於一座淨水場實廠測試,以BACF 串連 UF模型廠連續操作方式處理原水,處理後出水中HAA濃度可以被控制在8.0 μg/L以下,去除率可達80%以上。BACF串聯UF處理系統之優點是阻擋不定期之生物膜脫落流出,可降低清水後加氯之生物膜型態之消毒副產物生成量,BACF 串連 UF方法處理後出水之HAA之計算值與實際值為高度相關,相關係數R2= 0.84。本研究建立之HAA經驗方程式,可藉由水質項目監測,計算淨水廠飲用水中水質與即時變化,用於清水水質管理及飲用水緊急應變。
Abstract
This study is to compare the treatment performance of ozonation, biological activated carbon filters (BACF) and ultra-filtration (UF) methods on treating the excess amounts of haloacetic acids (HAA) in raw water. The experimental results in this study were to examine the variations of HAA in effluent and effects of operation factors on treatment efficiency using different treatment systems. The empirical equations of HAA concentration in effluent of different treatment systems were developed using parameters of water quality and concentrations of HAA. In final step the empirical equations of HAA were to proof the regression coefficients between the calculated values and the measurement values. The parameters of water quality were including dosages of ozone in ozonation unit and empty bed residence times (EBCT) in BACF.
Results showed the concentrations of HAA in raw water could reduce in effluent by treating systems of ozone plus BACF or by treating systems of only BACF. The treatment efficiencies of methods of ozone plus BACF were 10% higher than the method of only BACF. In method of BACF plus UF, the treatment efficiencies of HAA were obtained an optimal in raw water when the BACT was set on 50 minutes in BACF system. In field testing we were re-treating the treated drinking water in a water treatment plant, all tests were performed by a pilot plant (a BACF plus a hollow fiber membrane) which connected with the effluent of rapid sand filter in a water treatment plant. The concentrations of HAA in effluent were found all reduced below 8.0 μg/L by using the pilot plant (a BACF plus a hollow fiber membrane). The results showed the removals of HAA were over 80%. We found a probably avoid method was for biofilm leachates from BACF system by method of UF. These findings can offer to protect the reaction of HAA after-formation from biofilm release in drinking water. The BACF + UF system also could remove HAA about 80% in treated drinking water. The empirical equation was developed in this work, and verified using the analyzed values and calculated values. The regression with BACF plus UF methods showed a high coefficient of determination (R2 = 0.84), indicating a good comparison between the calculated and measured values of HAA by treating with the BACF plus UF systems. Furthermore, a prediction equation of HAA was established. These findings offer a new incites in water treatment plants to monitor the variations between water qualities in treated drinking water, and to manage the emergency procedures in drinking water.
目次 Table of Contents
論文審定書i
謝  誌 ii
中文摘要 iii
Abstract iv
目  錄 vi
圖  次 xi
表  次 xiv
第一章 前  言 1
1-1 研究緣起 1
1-2 研究目的與內容 2
第二章 文獻回顧 4
2-1 自然水體中有機物之分類及性質 4
2-1-1 水中有機物的性質及種類 4
2-1-2 水中有機物之來源及影響 4
2-1-3 水中有機物之生物分解程序 9
2-2 淨水處理程序 11
2-2-1 臭氧 11
2-2-2 活性碳 12
2-2-3 生物活性碳濾床管柱試驗 12
2-2-4 薄膜 14
2-2-5 傳統淨水場處理程序出水之有機物值變化 19
2-2-6 薄膜處理程序中有機物值變化 19
2-2-7 生物活性碳濾床處理程序中有機物值變化 20
2-2-8 BACF與薄膜之處理程序 22
2-3 飲用水中之消毒副產物 24
2-3-1 消毒副產物定義 24
2-3-2 三鹵甲烷之前驅物 25
2-3-3 三鹵甲烷之分類 26
2-3-4 鹵化乙酸之前驅物 27
2-3-5 鹵化乙酸之分類 27
2-3-6 三鹵甲烷及鹵化乙酸之生成潛勢 29
2-4 統計分析 30
2-4-1 相關性分析 30
2-4-2 迴歸分析 30
2-4-3 類神經網路方法 30
第三章 研究方法 34
3-1 研究架構及流程 34
3-1-1 研究架構與流程 34
3-2 實驗流程及方法 36
3-2-1 臭氧處理程序實驗方法 36
3-2-2 生物活性碳濾床(BACF)程序實驗方法 37
3-2-3 BACF串聯中空纖維薄膜系統 38
3-2-4 現場模組之BACF系統 42
3-3 人工原水 45
3-3-1 腐植酸之配置與操作條件 45
3-3-2 腐植酸檢量線建立 46
3-4 水質項目與分析方法 47
3-4-1 總有機碳與溶解性有機碳 47
3-4-2 總有機碳 48
3-4-3 溶解性有機碳 48
3-4-4 臭氧濃度 49
3-4-5 UV254 49
3-4-6 三鹵甲烷 50
3-4-7 三鹵甲烷生成潛勢 52
3-4-8 鹵化乙酸 53
3-4-9 鹵化乙酸生成潛勢 55
3-5 統計分析 57
3-5-1 相關性分析 57
3-5-2 線性迴歸分析 58
3-5-3 類神經網路模式概述 59
3-6 分析儀器 63
第四章 結果與討論 64
4-1 原水水質背景調查 64
4-1-1 枯水期之原水水質變化 64
4-1-2 豐水期之原水水質變化 64
4-1-3 傳統淨水場之水中有機物變化 66
4-1-4 人工原水與天然原水之相關性探討 68
4-2臭氧對原水水質之處理效率 70
4-2-1臭氧系統之臭氧溶解濃度 70
4-2-2臭氧對原水水質之處理效能 72
4-3 臭氧串聯BACF對TOC及DOC處理效能 77
4-3-1 總有機碳(TOC)去除率 79
4-3-2 溶解性有機碳(DOC)去除率 81
4-4 BACF對消毒副產物DBPFP處理效能 84
4-4-1 THMFP去除率 84
4-4-2 HAAFP去除率 86
4-5 BACF及UF系統之操作參數評估 88
4-5-1 BACF對有機物處理效率 88
4-5-2 中空纖維薄膜(UF)處理程序對濁度去除效率 90
4-6 BACF及UF系統對有機物去除效率 91
4-6-1 消毒副產物處理效率 92
4-6-2 有機碳處理效率 98
4-7 質量平衡及相關性方程式建立 102
4-7-1 氯離子質量平衡 102
4-7-2 處理程序對水質參數相關性分析 103
4-7-3 處理程序對消毒副產物迴歸預測方程式 105
4-7-4 以類神經網路方法建立DBPS及DOC預測模式 109
第五章 結論與建議 113
5-1 結論 113
5-1-1 臭氧去除效率 113
5-1-2 BACF去除效率 113
5-1-3 BACF-UF去除效率 114
5-1-4 預測方程式驗證 114
5-2 建議 115
參考文獻 116
參考文獻 References
1. Akbarizadeh, M., Daghbandan, A., & Yaghoobi, M. (2013). Modeling and Optimization of Poly Electrolyte Dosage in Water Treatment Process by GMDH Type-NN and MOGA. International Journal of Chemoinformatics and Chemical Engineering, 3(2), 94-106.
2. Aleboyeh, A., Kasiri, M. B., Olya, M. E., & Aleboyeh, H. (2008). Prediction of azo dye decolorization by UV/H2O2 using artificial neural networks. Dyes and Pigments, 7(2), 288-294.
3. Aminabad, M. S., Maleki, A., & Hadi, M. (2014). Application of Artificial Neural Network (ANN) for the prediction of water treatment plant influent characteristics. Journal of Advances in Environmental Health Research, 1(2), 89-100.
4. Arbuckle, T. E., Hrudey, S. E., Krasner, S. W., Nuckols, J. R., Richardson, S. D., Singer, P., ... & Waller, K. (2002). Assessing exposure in epidemiologic studies to disinfection by-products in drinking water: report from an international workshop. Environmental Health Perspectives, 110(Suppl 1), 53.
5. Arslan-Alaton, I. (2003). Novel catalytic photochemical and hydrothermal treatment processes for acid dye wastewater. Journal of Environmental Science and Health, Part A, 38(8), 1615-1627.
6. Buchanan, W., Roddick, F., & Porter, N. (2008). Removal of VUV pre-treated natural organic matter by biologically activated carbon columns. Water Research, 42(13), 3335-3342.
7. Cardador, M. J., & Gallego, M. (2011). Haloacetic acids in swimming pools: swimmer and worker exposure. Environmental science & technology, 45(13), 5783-5790.
8. Chang, C. L., & Liao, C. S. (2012). Parameter Sensitivity Analysis of Artificial Neural Network for Predicting Water Turbidity. Transfer, 3(3), 4-5.
9. Charnock, C., & Kjønnø, O. (2000). Assimilable organic carbon and biodegradable dissolved organic carbon in Norwegian raw and drinking waters. Water Research, 34(10), 2629-2642.
10. Chen, Y., Yang, B., Dong, J., & Abraham, A. (2005). Time-series forecasting using flexible neural tree model. Information Sciences, 174(3), 219-235.
11. Chuang, Y. H., Wang, G. S., & Tung, H. H. (2011). Chlorine residuals and haloacetic acid reduction in rapid sand filtratio-n. Chemosphere, 85(7), 1146-1153.
12. Chuang, Y. H., Lin, A. Y. C., Wang, X. H., & Tung, H. H. (2013). The contribution of dissolved organic nitrogen and chloramines to nitrogenous disinfection byproduct formation from natural organic matter. Water research,47(3), 1308-1316.
13. Çigdem, K., Kozet Y., Bulent M., Deniz T., Ahmet S. (2011). Evaluation of Biological Activated Carbon (BAC) process in wastewater treatment secondary effluent for reclamation purposes. Journal Desalination, 265, 266-273.
14. Daniel G., Sujanie G., Jamie C., Holady, Douglas M. B., Oscar Q., Rebecca A. T., Shane A. S.,(2011)”Pilot-scale evaluation of ozone and biological activated carbon for trace organic contaminant mitigation and disinfection” water research, 45-2155-2165.
15. Elkins, K.M.Nelson, D.J. (2002) Spectroscopic approaches to the study of the interaction of aluminum with humic substances. Coordination Chemistry Reviews, 228(2), 205-225.
16. Escobar, I. C., & Randall, A. A. (2001). Assimilable organic carbon (AOC) and biodegradable dissolved organic carbon (BDOC): complementary measurements. Water research, 35(18), 4444-4454.
17. Escobar I. C., Randall A. A., (2001) “Ozone and Distribution System Biostability.” Jour. AWWA, 93(10):77 – 89.
18. Font-Ribera, L., Kogevinas, M., Schmalz, C., Zwiener, C., Marco, E., Grimalt, J. O., ... & Naccarati, A. (2016). Environmental and personal determinants of the uptake of disinfection by-products during swimming. Environmental research, 149, 206-215.
19. Gai, X. J., & Kim, H. S. (2008). The role of powdered activated carbon in enhancing the performance of membrane systems for water treatment. Desalination, 225(1), 288-300.
20. Galapate, R. P., Baes, A. U., & Okada, M. (2001). Transformation of dissolved organic matter during ozonation: effects on trihalomethane formation potential. Water Research, 35(9), 2201-2206.
21. Gallard, H., & von Gunten, U. (2002). Chlorination of natural organic matter: kinetics of chlorination and of THM formation. Water research, 36(1), 65-74.
22. Gerrity, D., Gamage, S., Holady, J. C., Mawhinney, D. B., Quiñones, O., Trenholm, R. A., & Snyder, S. A. (2011). Pilot-scale evaluation of ozone and biological activated carbon for trace organic contaminant mitigation and disinfection. Water research, 45(5), 2155-2165.
23. Hsu, C.H., Jeng, W.L., Chang, R.M., Chien, L.C.and Han, B.C.,Estimation of potential lifetime cancer risk for trihalomethanes from consuming chlorinated drink water in Taiwan", Environment Research, Section A, 85, 77-82 (2001).
24. Huo, S., He, Z., Su, J., Xi, B., & Zhu, C. (2013). Using artificial neural network models for eutrophication prediction. Procedia Environmental Sciences, 18, 310-316.
25. Huang, W. J., Lin, H.D., Wang, C.Z. (2002). The removal of ozonation by-products by granular activated carbon, Melbourne, Australia: IWA 3rd World water Congress.
26. Huang, W. J., Graham, N., Templeton, 361 M.R., Zhang, Y., Collins, C., and Nieuwenhuijsen, M. (2009). A comparison of the tole of two blue-green algae in THM and HAA formation, Water Research, 43, 3009-3018.
27. Iglesias, C., Torres, J. M., Nieto, P. G., Fernández, J. A., Muñiz, C. D., Piñeiro, J. I., & Taboada, J. (2014). Turbidity Prediction in a River Basin by Using Artificial Neural Networks: A Case Study in Northern Spain. Water Resources Management, 28(2), 319-331.
28. Imrie, C. E., Durucan, S., & Korre, A. (2000). River flow prediction using artificial neural networks: generalisation beyond the calibration range. Journal of Hydrology, 233(1), 138-153.
29. Kalkan, C., Yapsakli, K., Mertoglu, B., Tufan, D., & Saatci, A. (2011). Evaluation of biological activated carbon (BAC) process in wastewater treatment secondary effluent for reclamation purposes. Desalination, 265(1), 266-273.
30. Kawamura, S. (2000). Integrated design and operation of water treatment facilities. John Wiley & Sons.
31. Kirisits, M. J., Snoeyink, V. L., & Kruithof, J. C. (2000). The reduction of bromate by granular activated carbon. Water Research, 34(17), 4250-4260.
32. Kitis, M., Karanfil, T., Wigton, A., & Kilduff, J. E. (2002). Probing reactivity of dissolved organic matter for disinfection by-product formation using XAD-8 resin adsorption and ultrafiltration fractionation. Water Research, 36(15), 3834-3848.
33. Komulainen, H. (2004). Experimental cancer studies of chlorinated by-products. Toxicology, 198(1), 239-248.
34. Liang, L., & Singer, P. C. (2003). Factors influencing the formation and relative distribution of haloacetic acids and trihalomethanes in drinking water. Environmental Science & Technology, 7(13), 2920-2928.
35. Lou, J. C., Chang, T. W., & Huang, C. E. (2009). Effective removal of disinfection by-products and assimilable organic carbon: An advanced water treatment system. Journal of hazardous materials, 172(2), 1365-1371.
36. Lou, Jie-Chung., Chen ,Bi-Hsiang., Chang ,Ting-Wei .,Yang Hung-Wen and Han ,Jia-Yun. (2011) Variation and removal efficiency of assimilable organic carbon(AOC) in an advanced water treatment system. Environ Monit Assess, 178, 73-83.
37. Lou, Jie-Chung., Lin ,Chung-Yi., Han ,Jia-Yun ., Tseng, Wei-Biu, Hsu, Kai-Lin and Chang ,Ting-Wei. (2012) Comparing removal of trace organic compounds and assimilable organic carbon(AOC) at advanced and traditional water treatment plants. Environ Monit Assess, 184, 3491-3501.
38. Lou, Jie-Chung., Huang ,Chien-Er., Han ,Jia-Yun Han and Huang ,Yu-Jen. (2010) Generation of disinfection by-products (DBPs) at two advanced water treatment plants. Environ Monit Assess, 162, 365-375.
39. Mandal, S., Mahapatra, S. S., Sahu, M. K., & Patel, R. K. (2014). Artificial neural network modelling of As (III) removal from water by novel hybrid material. Process Safety and Environmental Protection.
40. Matilainen, A., Gjessing, E. T., Lahtinen, T., Hed, L., Bhatnagar, A., & Sillanpää, M. (2011). An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment. Chemosphere, 83(11), 1431-1442.
41. Metz, D. H., Reynolds, K., Meyer, M., & Dionysiou, D. D. (2011). The effect of UV/H2O2 treatment on biofilm formation potential. Water research, 45(2), 497-508.
42. Moore, P. C. (2015). Development of Test Methods for Two USEPA Regulated Disinfection By-Products (DBPs): Trihalomethanes (THMs) and Haloacetic Acids (HAAs) in Tap Water Using New Gas Chromatography/Mass Spectrometry (GC/MS) with Purge and Trap System.
43. Oliver, D. M., Page, T., Heathwaite, A. L., & Haygarth, P. M. (2010). Re-shaping models of E. coli population dynamics in livestock faeces: Increased bacterial risk to humans?. Environment International, 36(1), 1-7.
44. Page, D., & Dillon, P. J. (2007). Measurement of the biodegradable fraction of dissolved organic matter relevant to water reclamation via aquifers. CSIRO Water for a Healthy Country Flaship.
45. Park, N. S., Park, H., & Kim, J. S. (2003). Examining the effect of hydraulic turbulence in a rapid mixer on turbidity removal with CFD simulation and PIV analysis. Aqua- Journal of Water Supply: Research and Technology, 52(2), 95-108.
46. Patil, K., Deo, M. C., Ghosh, S., & Ravichandran, M. (2013). Predicting sea surface temperatures in the North Indian Ocean with nonlinear autoregressive neural networks. International Journal of Oceanography, 2013.
47. Pearce, G. K., Heijnen, M., & Reckhouse, J. (2002). Using ultrafiltration membrane technology to meet UK Cryptosporidium regulations. Membrane Technology, 2002(1), 6-9.
48. Pereira, R. D. O., de Alda, M. L., Joglar, J., Daniel, L. A., & Barceló, D. (2011). Identification of new ozonation disinfection byproducts of 17β-estradiol and estrone in water. Chemosphere, 84(11), 1535-1541.
49. Philip C. Singer, ‎Howard S. Weinberg, ‎Katherine Brophy( 2002 )- ‎Relative Dominance of Haloacetic Acids and Trihalomethanes in Treated Drinking Water. American Water Works Association,104-107.
50. Richardson, S. D. (2003). Disinfection by-products and other emerging contaminants in drinking water. TrAC Trends in Analytical Chemistry, 22(10), 666-684.
51. Richardson, S. D., Plewa, M. J., Wagner, E. D., Schoeny, R. and DeMarini, D. M. (2007). Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. Mutation Research, 636, 178-242.
52. Sánchez-Polo, M., Salhi, E., Rivera-Utrilla, J., & Von Gunten, U. (2006). Combination of ozone with activated carbon as an alternative to conventional advanced oxidation processes. Ozone: Science and Engineering, 28(4), 237-245.
53. Sagbo, O., Sun, Y., Hao, A., & Gu, P. (2008). Effect of PAC addition on MBR process for drinking water treatment. Separation and Purification Technology, 58(3), 320-327.
54. Sarkar, S., Blaney, L. M., Gupta, A., Ghosh, D., & SenGupta, A. K. (2007). Use of ArsenXnp, a hybrid anion exchanger, for arsenic removal in remote villages in the Indian subcontinent. Reactive and Functional Polymers, 67(12), 1599-1611.
55. Scheuring, M., Evans, R., Buzza, E., Movahed, B., Gigliotti, T., & Casson, L. (2000). Membrane filtration as posttreatment. Journal of the American Water Works Association, 92(8), 59-68.
56. Seo, G., Moon, C., Chang, S., & Lee, S. (2004). Long term operation of high concentration powdered activated carbon membrane bio-reactor for advanced water treatment. Water Science & Technology, 50(8), 81-87.
57. Shen, C., Norris, P., Williams, O., Hagan, S., & Li, K. (2016). Generation of chlorine by-products in simulated wash water. Food chemistry, 190, 97-102.
58. Standard Methods for the Examination of Water and Wastewat-er(2003). 20th ed, APHA, USEPA.
59. Stephenson, T. (2000). Membrane bioreactors for wastewater treatment.
60. Steven Van Geluwe., Leen Braeken., Bart Van der Bruggen. (2011). Ozone oxidation for the alleviation of membrane fouling by natural organic matter: A review. Water Research, 45, 3551-3570.
61. Tang, S., Wang, X. M., Yang, H. W., & Xie, Y. F. (2013). Haloacetic acid removal by sequential zero-valent iron reduction and biologically active carbon degradation. Chemosphere, 90(4), 1563-1567.
62. Toor, R., & Mohseni, M. (2007). UV-H2O2 based AOP and its integration with biological activated carbon treatment for DBP reduction in drinking water. Chemosphere, 66(11), 2087-2095.
63. Tsai, H. H., Ravindran, V., Williams, M. D., & Pirbazari, M. (2004). Forecasting the performance of membrane bioreactor process for groundwater denitrification. Journal of Environmental Engineering and Science, 3(6), 507-521.
64. Tsai, Y. T., Weng, Y. H., Lin, A. Y. C., & Li, K. C. (2011). Electro-microfiltration treatment of water containing natural organic matter and inorganic particles. Desalination, 26, 133-138.
65. Tung, H. H., Unz, R. F., & Xie, Y. F. (2009). Evidences of HAAs Biodegradation in GAC Filtration. Journal of Environmental Management, 19, 59-66.
66. Tung, H. H., & Xie, Y. F. (2009). Association between haloacetic acid degradation and heterotrophic bacteria in water distribution systems. Water research, 43(4), 971-978.
67. Twort, A. C., Ratnayaka, D. D., & Brandt, M. J. (2000). Water supply. Butterworth-Heinemann.
68. Urbansky, E. T. (2000). Techniques and methods for the determination of haloacetic acids in potable water. Journal of environmental monitoring, 2(4), 285-291.
69. Van der Kooij, D. (2000). Biological stability: a multidimensional quality aspect of treated water. Water, air, and soil pollution, 123(1-4), 25-34.
70. Van Geluwe, S., Braeken, L., & Van der Bruggen, B. (2011). Ozone oxidation for the alleviation of membrane fouling by natural organic matter: A review. Water research, 45(12), 3551-3570.
71. Villanueva, C. M., Kogevinas, M., & Grimalt, J. O. (2003). Haloacetic acids and trihalomethanes in finished drinking waters from heterogeneous sources. Water Research, 37(4), 953-958.
72. Volk, C., Bell, K., Ibrahim, E., Verges, D., Amy, G., & LeChevallier, M. (2000). Impact of enhanced and optimized coagulation on removal of organic matter and its biodegradable fraction in drinking water. Water Research, 34(12), 3247-3257.
73. Von Gunten, U. (2003). Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Research, 37(7), 1469-1487.
74. Warton, B., Heitz, A., Joll, C., & Kagi, R. (2006). A new method for calculation of the chlorine demand of natural and treated waters. Water Research, 40(15), 2877-2884.
75. Weinrich, L. A., Giraldo, E., & LeChevallier, M. W. (2009). Development and application of a bioluminescence-based test for assimilable organic carbon in reclaimed waters. Applied and environmental microbiology, 75(23), 7385-7390.
76. Weinrich, L. A., Jjemba, P. K., Giraldo, E., & LeChevallier, M. W. (2010). Implications of organic carbon in the deterioration of water quality in reclaimed water distribution systems. Water Research, 44(18), 5367-5375.
77. Weng, C. H., Lin, Y. T., & Tzeng, T. W. (2009). Removal of methylene blue from aqueous solution by adsorption onto pineapple leaf powder. Journal of hazardous materials, 170(1), 417-424.
78. Weng, C. H., & Wu, Y. C. (2011). Potential low-cost biosorbent for copper removal: pineapple leaf powder. Journal of Environmental Engineering, 138(3), 286-292.
79. Weng, C. H., Lin, Y. T., Chen, Y. J., & Sharma, Y. C. (2013). Spent green tea leaves for decolourisation of raw textile industry wastewater. Coloration Technology, 129(4), 298-304.
80. Wu, G. D., & Lo, S. L. (2010). Effects of data normalization and inherent-factor on decision of optimal coagulant dosage in water treatment by artificial neural network. Expert Systems with Applications, 37(7), 4974-4983.
81. Yang, J. S., Yuan, D. X., & Weng, T. P. (2010). Pilot study of drinking water treatment with GAC, O3/BAC and membrane processes in Kinmen Island, Taiwan. Desalination, 263(1), 271-278.
82. Yiantsios, S. G., & Karabelas, A. J. (2001). An experimental study of humid acid and powdered activated carbon deposition on UF membranes and their removal by backwashing. Desalination, 140(2), 195-209.
83. Zhang, M., Li, C., Benjamin, M. M., & Chang, Y. (2003). Fouling and natural organic matter removal in adsorbent/membrane systems for drinking water treatment. Environmental science & technology, 37(8), 1663-1669.
84. Zhang, P., LaPara, T. M., Goslan, E. H., Xie, Y., Parsons, S. A., & Hozalski, R. M. (2009). Biodegradation of haloacetic acids by bacterial isolates and enrichment cultures from drinking water systems. Environmental science & technology, 43(9), 3169-3175.
85. 吳冠德,(2009),以類神經網路預測自來水場混凝加藥量及其影響因子之研究,國立臺灣大學環境工程學研究所。
86. 李宜玶,(2003),探討臭氧對天然有機物生物降解之影響,國立中興大學環境工程學系。
87. 李念勳,(2007),應用類神經網路於非點源污染預測模式及預測採樣之研究,國立成功大學環境工程學系。
88. 李泰毅,(2007),金門地區配水管網水質參數與微生物再生長之研究,國立臺灣大學公共衛生學院環境衛生研究所。
89. 周瑋陞,(2006),自來水水質分析調查及總三鹵甲烷之風險評估-以高雄市為例,國立中山大學環境工程研究所。
90. 林治宇,(2003),結合化學與生物處理方法處理半導體廠有機廢水之可行性評估,國立台灣大學環境工程學研究所。
91. 洪坤鈺,(2002),配水管網水質模式動力參數之研究,國立中興大學環境工程學系。
92. 高淑惠,(2005),海洋放流污水添加次氯酸鈉消毒劑之效益評析,國立中央大學環境工程研究所。
93. 許瓊文,(2008),應用類神經網路模擬高雄都會區臭氧濃度趨勢變化之研究,國立中山大學環境工程研究所。
94. 郭修志,(2006),自來水配水系統消毒副產物生成模式之研究,國立臺灣大學環境工程學研究所。
95. 黃鈺茹、黃登福,(2007),自來水中氯化消毒副產物之飲用安全性,自來水協會會刊,26(3),23-37。
96. 楊家瑜,(2008),高級淨水程序消毒副產物之生成研究,國立中山大學環境工程研究所。
97. 廖琇怡,(2005),高雄市臭氧特性與氣象因子之相關性探討,國立中山大學環境工程研究所。
98. 賴文亮,(2002),各種淨水程序對生物可分解有機質及消毒副產物之控制,國立成功大學環境工程學系。
99. 簡肇成,(2001),結合流體化結晶床與薄膜去除水中硬度之研究,私立淡江大學水資源與環境工程學系。
100. 行政院環境保護署,(2014) ,飲用水水質標準,環署毒字第1030001229號令修正。
101. 葉怡成,(2009),類神經網路模式應用與實作,儒林圖書公司,台灣台北。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.133.79.70
論文開放下載的時間是 校外不公開

Your IP address is 3.133.79.70
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code