Responsive image
博碩士論文 etd-0524105-014141 詳細資訊
Title page for etd-0524105-014141
論文名稱
Title
離岸堤背後灘線長期變遷之數值模擬
Numerical Simulations on Long-Term Shoreline Changes behind Detached Breakwaters
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
159
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-05-17
繳交日期
Date of Submission
2005-05-24
關鍵字
Keywords
離岸堤、數值模擬、灘線變遷
detached breakwaters, numerical simulation, shoreline change
統計
Statistics
本論文已被瀏覽 5726 次,被下載 2687
The thesis/dissertation has been browsed 5726 times, has been downloaded 2687 times.
中文摘要
本研究係以數值模擬,探討離岸堤背後灘線的長期變遷。由相關的波、流場及地形變遷之數值模式,在不同波浪條件及離岸堤設置下,分別計算離岸堤背後之波、流場特性及平衡灘線變遷情形。本報告討論不同之深海波向角、波浪週期、深海波高、離岸堤長度、離岸距離及離岸堤群開口寛度等因素,對離岸堤背後之波、流場及灘線長期變遷之基本特性之影響。
計算結果顯示,在深海波向角0~45度、深海波高0.5~1.5公尺及離岸堤長度60~120公尺時,當波向角、波高或堤長增加時,離岸堤背後灘線之向海側最大淤積距離及向陸側最大侵蝕距離皆隨之增加。而在斜向波浪作用下,平衡灘線的不對稱形狀,隨深海波向角度的增加,到&#36921;平衡之時間隨之變長;沙舌頂點位置亦逐漸往下游偏移。在測試的波浪週期(7~10秒)內,波浪週期增加,堤後灘線向海側最大淤積距離及向陸側最大侵蝕距離反而稍微減小;但波浪週期僅影響灘線達到穩定時間的快慢,並不會明顯地影響海岸線達到靜態平衡之形狀。又由計算不同離岸距離之結果發現,當1.0 < S/B < 2.0時,堤後僅能形成沙舌,無法形成繫岸沙洲;當S/B小於等於0.8時,堤後灘線淤積到&#36921;離岸堤,形成繫岸沙洲。
最後,本研究以數值模式所預測之離岸堤背後灘線結果,與水工模型試驗、拋物線型靜態岬灣經驗式、GENESIS模式及LITPACK模式比較,驗證結果頗為良好。建議在一般離岸堤設計上,採用傳送係數K1=0.60及K2=0.60為初始值進行模擬與預測。
Abstract
In this thesis, a numerical simulation model is applied to investigate the long-term shoreline changes behind detached breakwaters. The model includes three components, namely a wave model, a current model, and a shoreline change model. In the numerical simulations, various combinations of wave conditions and the placement of detached breakwater are chosen to explore the effect of detached breakwaters on the shoreline change.
The results of calculation show that with incident wave angles within 0~45, wave height in the range of 0.5~1.5m, or the offshore distance to the detached breakwaters being 60~120m, the larger in any one of these three parameters is, the bigger the erosion distance onshore from the original shoreline and the extent of salient offshore are behind detached breakwaters. When incident angle of the wave increases, shoreline plan form becomes skewed, and the time required to arrive at equilibrium also increases, in addition to the position of the top of salient moves downcoast. Within the wave periods of 7~10 seconds tested, waves with large period are found to show slight decrease of the erosion distance onshore and the extent of salient offshore behind detached breakwaters. The plan form of the salient is not affected by wave period. However, the larger the wave period is, the sooner the long-tern shoreline will result. Moreover, for a detached breakwater constructed in the range of offshore distances within 1.0<S/B<2.0, variable offshore distances do not produce much difference in the erosion distance onshore and the extent of salient offshore behind detached breakwaters, and salient only will form. In the case of the S/B =< 0.8, a tombolo will result.
Finally, the results of shoreline plan form from the numerical modeling are verified by the empirical parabolic bay shape equation of Hsu and Evans (1989), a small-scale hydraulic model, and two numerical models based on GENESIS and LITPACK. Overall, the result are in good agreement with these four different approaches, and therefore, the present model is suitable for practical engineering applications.
目次 Table of Contents
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 海岸變遷之研究 3
1.4 文獻回顧 6
1.5 本文組織 10
第二章 海岸線變遷數值模式 11
2.1 波場數值模式 12
2.1.1 基本控制方程式 13
2.1.2 碎波控制指標 14
2.1.3 邊界條件 15
2.2 流場數值模式 17
2.2.1 基本控制方程式 17
2.2.2 邊界條件 18
2.3漂沙量估算 19
2.4灘線變遷計算模式 24
2.4.1 單線模式 24
2.4.2 灘線長期變遷計算 26
2.5 模式計算流程 30
第三章 長期灘線計算結果與分析 34
3.1 計算條件 34
3.2傳送係數K1及K2之影響 36
3.3 單離岸堤背後之波、流場及長期灘線變遷計算結果 41
3.3.1 深海波向角之影響 41
3.3.2 波浪週期之影響 47
3.3.3 深海波高之影響 52
3.3.4 離岸堤長度之影響 57
3.3.5 離岸堤離岸距離之影響 61
3.4離岸堤群開口&#23515;度之影響 66
3.5 綜合討論 71
第四章 模式驗證 72
4.1 波流場模式之驗證 72
4.2 靜態岬灣經驗式 75
4.2.1 靜態平衡岬灣經驗式 75
4.2.2 沙舌形狀之經驗公式 77
4.2.3 MEPBAY軟體介紹 80
4.2.4 灘線模擬結果與&#25243;物線型岬灣經驗式之比較 83
4.3 模擬驗證水工模型試驗 86
4.4 與GENESIS模式比較 91
4.4.1 GENESIS模式簡介 91
4.4.2 模擬單離岸堤背後灘線與GENESIS模式之比較 93
4.4.3 模擬離岸堤群背後灘線與GENESIS模式之比較 93
4.5 與LITPACK模式比較 97
4.5.1 LITPACK模式簡介 97
4.5.2 模擬單離岸堤背後灘線與LITPACK模式之比較 98
4.5.3 模擬離岸堤群背後灘線與LITPACK模式之比較 98
4.6 傳送係數K1及K2之初始設定 101
第五章 結論與建議 104
5.1 結論 104
5.2 建議 106
參考文獻 107
附錄A 數值模式之計算機環境及執行運算時間 114
附錄B GENESIS系統輸入資料簡介 115
附錄C LITPACK系統模組簡介 126
附錄D 波、流場及灘線數值模擬輸入資料樣本 131
參考文獻 References
Bakker, W.T., (1968). The dynamics of a coast with a groin system. Porc. 11th International Conf. on Coastal Eng., ASCE, 507-528.
Coplend, G. J. M., (1985). A practical alternative to mild-slope wave equation. Coastal Engineering, 9:125-149.
Dean, R. G., (1977). Equilibrium beach profiles: U.S. Atlantic and Gulf coasts. Department of Civil Engineering, Ocean Report No. 12, University of Delaware, Newark, DE, USA.
Ebersole, B. A., M. A. Cialone, and M. D. Prater, (1986). Regional coastal processes numerical modeling system, Report 1, RCPWAVE-A linear wave propogation model for engineering use. Technical Report CERC-86-4. Coastal Engineering Research Center, U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS.
Goda, Y., (1975). Irregular wave deformation in the surf zone. Coastal Engineering in Japan, 18:13-26.
Gravens, M. B., N. C. Kraus and H. Hanson, (1991). GENESIS-Generalized model for simulating shoreline change. Instruction Report CERC-89-19, U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS.
Hallermeier, R. J., (1981). A profile zonation for seasonal sand beaches from wave climate. Coastal Engineering, 4:253-277.
Hallermeier, R. J., (1983). Sand transport limits in coastal structure design. Proc. Coastal Structures '83, ASCE, 703-716.
Hanson, H. and N. C. Kraus., (1989). GENESIS-Generalized model for simulate shoreline change, Report 1, Technical Reference. Technical Report CERC-89-19, Coastal Engineering Research Center, U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS.
Horikawa, K. and C. Sonu, (1958). An experimental study on the effect of coastal groins. Coastal Engineering in Japan, 1:59-74.
Horikawa, K., (1988). Nearshore Dynamics and Coastal Processes. Tokyo:University of Tokyo Press, 522 pp.
Hsu, J. R. C. and C. Evans, (1989). Parabolic bay shape and applications. Proc. The Institution of Civil Engineers, Part 2, London: Thomas Telford, 87:557-570.
Hsu, J. R. C. and R. Silvester, (1990). Accretion behind single offshore breakwater. J. Waterways, Ports, Coastal and Ocean Engineering, ASCE, 116 (3):362-379.
Klein, A. H. F., A. Vargas, A. Varges, A. L. A. Raabe and J. R. C. Hsu, (2003). Visual assessment of bayed beach stability with computer software. Computers and Geosciences, 29:249-1257.
Komar, P. H. and D. L. Inman., (1970). Longshore sand transport on beaches. J. Geophysical Research, 75:5914-5927.
Kraus, N. C., and S. Harikai, (1983). Numerical model of the shoreline change at Oarai beach. Coastal Engineering, 7(1):1-28.
Kraus, N. C., K. J. Gingerich, and J. D. Rosati, (1988). Toward an improved empirical formula for longshore sand transport. Proc, 21th International Conf. on Coastal Engineering, ASCE, v. 2, 1182-1196.
Kraus, N. C., S. Harikai, and S. Kubota, (1981). A numerical simulation of shoreline evolution at Oarai beach. Proc. 21th Japanese Conf. on Coastal Engineering, JSCE, 295-299.
Longuet-Higgins, M. S., (1970). Longshore current generated by obliquely incident sea wave. J. Geophysical Research, 75(33):6778-6801.
Longuet-Higgins, M. S. and R. W. Stewart, (1964). Radiation stress in water wave – a physical discussion with applications. Deep-Sea Research, 11(4): 3-26.
McCormick, M. E., (1993). Equilibrium shoreline response to breakwaters. J. Waterways, Port, Coastal and Ocean Engineering, ASCE, 119(6):657-670.
Moreno, L. J. and Kraus, N. C., (1999). Equilibrium shape of headland-bay beaches for engineering design. Proc. Coastal Sediments ’99, ASCE, v.1, 860-875.
Nagai, S., (1956). Arrangements of groins on a sandy beach, J. Waterways and Harbors Division, ASCE, 82(WW2), Paper No. 1063.
Nielsen, A. F., Turner, I. L. Miller, B. M., Leyden, V. and Gordon, A. D., (2000). Experiences with physical scale basin modeling using mobile sediments. Proc. 27th International Conf. on Coastal Engineering, ASCE, v.3, pp 2928-2941.
Nishimura, H., K. Maruyama and T. Sakuria, (1985). On the numerical computation of nearshore current. Coastal Engineering in Japan, 28:137-145.
Ozasa, H. and A. H. Brampton, (1980). Mathematical modeling of beaches backed by seawells. Coastal Engineering, 14:47-64.

Pelnard-Considere, R., (1956). Essai de theorie de l'evolution des forms de vivage en plages de sable et de dalets. IVeme Journees de l'Hydraulique, Les Energies de la Mer, Question III, Report, No. 1. 289-298.
Price, W.A., K.W. Tomlinson and D.H. Willis, (1972). Predicting changes in the plan shape of beaches. Proc. 13th Internationa. Conf. on Coastal Engineering, ASCE, v.2, 1321-1329.
Perlin, M. and R. G. Dean, (1983). A numerical model to simulate sediment transport in vicinity of coastal structures. Miscellaneous Report 83-10, Coastal Engineering Research Center, U.S. Army Corps of Engineers, Vicksburg, MS.
Shinohara, K., and Tsubaki, T., (1966). Model study on the change of shoreline of sandy beach by the offshore breakwater. Proc. 10th International Conf. Coastal Eng., ASCE, v.1:550-63.
Shuto, N., (1974). Nonlinear long wave in a channel of variable section. Coastal Engineering in Japan, 17:1-12.
Silvester, R. and J. R. C. Hsu, (1993). Coastal Stabilization: Innovative Concepts. Englewood Cliffs, NJ: Prentice Hall, 578pp.
Silvester, R. and J. R. C. Hsu, (1997). Coastal Stabilization. Singapore: World Scientific. (Reprint of Silvester and Hsu, 1993)
Tsai, C. P., H. B. Chen, and J. R. C. Hsu, (2001). Calculations of wave transformation across the surf zone. Ocean Engineering, 28(8):941-955.
Watanabe, A. and K. Maruyama, (1986). Numerical modeling of nearshore wave field under combined refraction, diffraction and breaking. Coastal Engineering in Japan, 29:19-39.
Watanabe, A., K. Maruyama, T. Shimizu, and T. Sakakiyama, (1986). Numerical prediction model of three- dimensional beach deformation around a structure. Coastal Engineering in Japan, 29:179-194.
Willis, E. B. (1978). Sediment load under wave and current. Proc. 16th International Conf. on Coastal Engineering, ASCE, v.2, 1626-4637.
Yasso, W. E. (1965). Plan geometry of headland bay beaches. Journal of Geology, 73:702-714.
林銘崇、楊博仁、黃正昌(1994),「波流互制作用下近岸海域地形變遷之數值模式」,第16屆海洋工程研討會論文集,第B1-15頁。
林銘崇、江允智、劉景毅(1996),「台灣中西部海岸漂砂估算式之研究」,第18屆海洋工程研討會論文集,第619-626頁。
林銘崇、蕭松山、張國強(2001),「海岸線變遷模式發展」,2001海洋數值模式研討會論文集,第13-1~13-8頁。
林銘崇、郭瑞琪、江允智、劉景毅(1996),「海域地形變化數值模式」,第18屆海洋工程研討會論文集,第627-637頁。
郭一羽主編(2001),「海岸工程學」,文山書局,pp.119-162。
郭金棟、陳文俊(1994),「彌陀海岸侵蝕防護對策之研究」,國立成功大學及水利海洋工程研究所研究報告。
郭金棟、陳文俊、王植煇(1996),「不同堤距離岸堤後堆砂效益影響之研究」,第18屆海洋工程研討會論文集,第712-720頁。
許泰文、陳建中(1995),「離岸堤群背後堆沙量之研究」,第17屆海洋工程研討會論文集,第1345-1361頁。
許泰文、歐善惠、洪逸銘 (1993),「透過式離岸堤群背後堆沙效果之研究」,中國土木水利工程學刊,第五卷,第二期,第99-108頁。
許泰文、歐善惠、張憲國(1994),「花蓮海岸侵蝕防治之研究(二)」,第16屆海洋工程研討會論文集,第186-206頁。
許泰文、徐立政、張憲國(1996),「單一離岸堤背後海岸線變遷之研究」,中國土木水利工程學刊,第九卷,第三期,第473-482頁
許泰文、簡仲和、溫志中、謝祥生(1998),「離岸堤背後灘線變化與堆沙效果之研究」,第20屆海洋工程研討會論文集,第467-474頁。
陳文俊、郭金棟、謝文凱(1995),「離岸堤後堆砂效益之研究」,第17屆海洋工程研討會論文集,第1311-1326頁。
黃君偉(2004),「突堤對下游灘線長期變遷影響之數值模擬」,國立中興大學土木工程學系,碩士論文。
楊天瑋(2003),「以GENESIS模擬長期海岸線變遷之應用」,國立中山大學海洋環境及工程學系,碩士論文,第34-46頁。
溫志中、許泰文(1996),「動態人工岬灣應用之研究」,第18屆海洋工程研討會論文集,第675-682頁。
蔡清標(1995),「突堤對波浪流場及沿岸地形變化影響之預測模式(Ⅱ)」,國科會研究報告,計畫編號NSC84-2621-P-005-022B。
蔡清標(1996),「人工岬島在彌陀海岸保護之應用研究(Ⅱ)」,國科會研究報告,計畫編號NSC86-2621-P-005-022。
蔡清標、陳鴻彬、許修党(1995),「碎波帶波高變化之計算」,港灣技術,第十卷,第一期,第93-111頁。
蔡清標、陳鴻彬、許榮中、廖俊傑、陳恆立(2001),「斜向波浪對離岸堤背後平衡灘線影響之實驗研究」,第23屆海洋工程研討會論文集,第516-523頁。
本間仁(1972),「海岸防災」,共立出版株式會社,日本。
田中則男(1983),「日本沿岸&#12398;漂砂特性&#12392;沿岸構造物築造&#12395;伴&#12358;地形變化&#12395;關&#12377;&#12427;研究」,港灣技研資料,No.453,148頁。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code