Responsive image
博碩士論文 etd-0524113-023052 詳細資訊
Title page for etd-0524113-023052
論文名稱
Title
以水熱法成長氧化鋅奈米柱改善氮化鎵二極體光萃取效率
Light Extraction Efficiency Improvement for GaN LEDs by Hydro-Thermal ZnO nanorods
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
88
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-20
繳交日期
Date of Submission
2013-07-12
關鍵字
Keywords
氧化鋅奈米柱、水熱法、氮化鎵發光二極體、透明導電薄膜、表面粗糙化
Transparent conducting film, surface roughness, Hydro-thermal, ZnO nanorods, GaN LED
統計
Statistics
本論文已被瀏覽 5694 次,被下載 0
The thesis/dissertation has been browsed 5694 times, has been downloaded 0 times.
中文摘要
本論文主要探討以水熱法成長氧化鋅奈米柱作為表面粗糙化,應用於氮化鎵藍光二極體上之光電特性研究,並與氧化鋅鋁(AZO)、傳統透明導電薄膜(Ni/Au)作比較。水熱法成長氧化鋅奈米柱是利用硝酸鋅與六亞甲基四胺作為沉積前驅物。先經由探討AZO與Ni/Au兩透明導電薄膜的穿透率與霍爾電性,並將其應用於氮化鎵藍光二極體,由於氧化鋅鋁薄膜直接成長在P型氮化鎵上,無法得到良好歐姆接觸,但因有良好的穿透率,因此AZO LED比Ni/Au LED的光輸出功率高,使有效改善光輸出功率。
接著為了要進一步提升光萃取效率,在氧化鋅鋁透明導電薄膜上以水熱法成長氧化鋅奈米柱作為表面粗糙化結構,探討在不同濃度及不同成長時間下的穿透率與表面形貌分析,並應用於氮化鎵藍光二極體,得到在400~600nm的最佳穿透率是硝酸鋅莫耳濃度為0.04M且成長時間為30分鐘的氧化鋅奈米柱,其值在454nm時為93.71%。在電性部份成長時間為90分鐘的ZnO nanorods LED整體光輸出功率為最佳,其最佳的Pattern(2) 在100mA下的光輸出功率比AZO LED之Pattern(2)還要高出126.1%。推測造成LED整體光電特性提升的原因是:成長氧化鋅奈米柱呈現細長不規則且粗糙的結構,造成LED整體光輸出功率的增加,雖然AZO透明導電薄膜與P型氮化鎵之間歐姆接觸差,但由實驗結果可知氧化鋅奈米柱結構的AZO可以有效改善LED的I-V特性與光輸出功率,進而提升光萃取效率。
Abstract
In the study, we investigated Zinc oxide nanorods by hydro-thermal contact to GaN blue LED and compared with AZO and Ni/Au thin film. Zinc nitrate and Hexamethylenetetramine were used as the deposition precursors.
We investigated transmission and Hall effect of AZO and Ni/Au transparent conducting film, and applied to the chip process of GaN blue LED. Ni/Au was more good ohmic contact than AZO on P-GaN, but that transmission of AZO was high, thus, light output power of AZO LED was more higher than Ni/Au LED, so that can improve properties of LED.
In order to further increase the light output power, ZnO nanorods was surface roughness by hydro-thermal on AZO film, that analyed transmission and surface of different concentrate and growth time, and applied to GaN blue LED. The optimum of transmission was 93.71% in 0.04M concentrate of Zinc nitrate and 30minutes of growth time at 454nm.The optimum of light output power was 90 minutes of growth time on ZnO nanorods, that Pattern(2) of light out power was more 126.1% than Pattern(2) of AZO LED at 100mA.
The escape probability of photons generated in active layer of LED can be enhances by slim, irregularly and roughness of ZnO nanorods. Although, that was bad ohmic contact between AZO film and P-GaN, but the result of ZnO nanorods on AZO can effecticely improve light output power of LED, and thus enhance the light extraction efficiency.
目次 Table of Contents
中文審定書………………………………………………………………………………i
英文審定書……………………………………………………………………………...ii
摘要……………………………………………………………………………...………iii
Abstract…………………………………………………………………………………iv
目錄………………………………………………………………………………………v
圖次………………………………………………………………………………………vii
表次………………………………………………………………………………………xii
第一章 緒論與研究動機………………………………………………………………….1
第二章 原理介紹與文獻回顧…………………………………………………………...3
2-1 發光二極體介紹與原理……………………………………………………………..3
2-2 二極體發光效率……………………………………………………………………..5
2-3 氧化鋅材料介紹……………………………………………………………………..7
2-3-1 氧化鋅之性質……………………………………………………………………...7
2-3-2 氧化鋅摻鋁於透明導電薄膜的應用………………………………………………9
2-4 水熱法介紹…………………………………………………………………………..10
2-4-1 水熱法應用於氧化鋅的合成演進…………………………………………………10
第三章 元件製作與儀器架構…………………………………………………………….14
3-1 製程示意圖…………………………………………………………………………..14
3-2 製程步驟……………………………………………………………………………..16
3-3 射頻濺鍍(RF Sputtering)……………………………………………………………19
3-4 水熱法(Hydro thermal)………………………………………………………………21
3-4-1 氧化鋅奈米柱成長………………………………………………………………….21
3-5 感應耦合式電漿蝕刻(Inductive Couple Plasma Etcher)………………………....23
3-6 快速高溫回火(RTA)………………………………………………………………….25
3-7 掃描式電子顯微鏡(Scanning electron microscopy)………………………………26
3-8 光電特性量測…………………………………………………………………………27
3-8-1 霍爾效應量測系統(Hall effect measurement system)…………………………27
3-8-2 紫外線可見光光譜儀(Ultraviolet Visible Spectrometer)………………………..29
3-8-3 LED光電量測系統………………………………………………………………….29
第四章 量測結果及討論…………………………………………………………………..30
4-1 透明導電薄膜Ni/Au與AZO應用於氮化鎵二極體之研究…………………………..31
4-1-1 沉積在藍寶石基板之Ni/Au與AZO性質…………………………………………...31
4-1-2 電性量測…………………………………………………………………………….32
4-2 水熱法成長氧化鋅奈米柱應用於AZO LED之研究……………………………….40
4-2-1 不同莫耳濃度之氧化鋅奈米柱於AZO薄膜之研究…………………………………40
4-2-1-1 表面形貌與光學特性分析…………………………………………………………41
4-2-1-2 電性量測…………………………………………………………………………..45
4-2-2 改變成長時間之氧化鋅奈米柱於AZO薄膜之研究………………………………..56
4-2-2-1 表面形貌與光學特性分析 ………………………………………………………..56
4-2-2-2 電性量測…………………………………………………………………………..59
4-3 發光圖比較分析……………………………………………………………………….68
第五章 結論………………………………………………………………………………..71
參考文獻…………………………………………………………………………………….72
參考文獻 References
[1]S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Koazki, H. Umemoto, M. Sano, and K. Chocho, Appl. Phys. Lett.,72,p.2014,(1998).
[2]張智淵,”射頻濺鍍沉積氧化鋅鋁透明導電膜之研究”,國立中山大學光電所,碩士論文(2009).
[3]Zhengmao Yin, Xiaoyan Liu, Yongzhong Wu, Xiaopeng Hao, and Xiangang Xu,
Optics Express, Vol. 20, Issue 2, pp. 1013-1021, (2012).
[4]Kyoung-Kook Kim, Sam-dong Lee, Hyunsoo Kim, Jae-Chul Park, Sung-Nam Lee, Youngsoo Park, Seong-Ju Park, and Sang-Woo Kim, Appl. Phys. Lett., 94, 071118 , (2009).
[5]Jang-Won Kang, Min-Suk Oh, Yong-Seok Choi, Chu-Young Cho, Tae-Young Park,C. W. Tu, and Seong-Ju Park, Electrochemical and Solid-State Letters, 14 (3) H120-H123, (2011).
[6]DAI Ke-Hui, WANG Lian-Shan, HUANG De-Xiu, SOH Chew-Beng, CHUA Soo-Jin, CHIN. PHYS. LETT. Vol. 28, 9, 098501, (2011).
[7]Ming-Kwei Lee, Chen-Lin Ho, and Po-Chun Chen, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 20, NO. 4, (2008).
[8]Ming-Kwei Lee,z Chen-Lin Ho, Chia-Chi Lin, Nai-Roug Cheng, Ming-Hsuan Houng, Yu-Kai Chien, and Chih-Feng Yen, Journal of the Electrochemical Society, 158 (5), D286-D289 ,(2011).
[9]謝尚均,”氮化鎵發光二極體之電流擴散模擬及元件製作”,國立中山大學光電所,碩士論文(2012)
[10]”LED製造技術與應用”,陳元燈,陳宇編著,電子工業出版社。
[11]”LED原理與應用”,郭浩中,賴芳儀,郭守義編著。
[12]E. S. Kim, and R. S. Muller ,”IC-processed piezoelectric microphone”, IEEE electron device lett., 8 467-468 (1987)
[13]C. C. Chang, and Y. E. Chen “Fabrication of high sensitivity ZnO thin film ultrasonic devices by electrochemical etch techniques” ,IEEE Trans. Ultrason. Ferroelectr. Freq. control, 44 624-628 (1997)
[14]Pearson’s Handbook of Crystallographic Data,4795
[15]Y. Yoshino, T. Makino, Y. Katayama and T. Hata, Vacuum, vol. 59,pp.538,2000.
[16]Y. Igasaki and H. Saito, Thin Solid Films, vol. 199,pp.223, 1991.
[17]Hong Seong Kang, Gun Hee Kim, Dong Lim Kim, Hyun Woo Chang, Byung Du Ahn, and Sang Yeol Lee, APPLIED PHYSICS LETTERS 89, 181103 (2006)
[18]J.Hu and R.G. Gorden, J. Appl. Phys., vol. 71, pp. 880, 1992.
[19]H. Nagaya, H. Honda and H. Kawahara, J. Electrochem. Soc. 135, 2013(1998).
[20]Deki, Y. Aoi, O. Hiroi and A. Kaijinami, Chem. Lett. 25, 433(1996).
[21]S. Yamabi and H. Imai, Chem. Lett. 30, 220(2001).
[22]S. Yamabi and H. Imai, Chem. Lett. 14, 609(2002).
[23]K. Tsukuuma, T. Akiyama and Imai, J. Non-Cryst. Solid. 210, 48(1997).
[24]M. Izaki and O. Shinohara, Adv. Mater. 13, 142(2001).
[25]L. Vayssieres, K. Keis, S.E. Lindquist, and A. Hagfeldt “ Purpose-Built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO,” J. Phys. Chem. B, 105 3350-3352 (2001)
[26] L. Vayssieres, K. Keis, A. Hagfeldt, and S. Lindquist “Three-dimensional array of highly oriented crystalline ZnO microtubes,” Chem. Mater., 13 4395-4398 (2001)
[27]Z.R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, and M.J. Mcdermott “Biomimetic arrays of oriented helical ZnO nanorods and columns,” J. Am. Chem. Soc., 124 12954-12955 (2002)
[28] K. Govender, D.S. Boyle, P.B. Kenway, and P. O’Brien “ Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution,” J . Mater . Chem., 14 2575–2591 (2004)
[29]L.E. Greene, M. Law, J. Goldberger, F. Kim, J.C. Johnson, Y. Zhang, R.J. Saykally, and P.Yang “Low-temperature wafer-scale production of ZnO nanowire arrays,” Angew. Chem. Int., 42 3031–3034 (2003)
[30]Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and R. P. H. Chang “Fabrication of ZnO nanorods and nanotubes in aqueous solutions”, Chem. Mater.,17 1001-1006 (2005)
[31]Z.K. Tang, G.K.L. Wong, and P. Yu “Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films”, Appl. Phys. Lett., 72 3270-3272 (1998)
[32]張家豪,魏鴻文,翁政輝等著,”電漿源原理與應用之介紹”,物理雙月刊(廿八卷二期)2006年4月。
[33]吳政鴻,碩士論文,“摻雜量對氮化銦鎵/氮化鎵多層量子井光學與結構特性之研究”,義守大學電子工程研究所。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.12.162.179
論文開放下載的時間是 校外不公開

Your IP address is 3.12.162.179
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code