Responsive image
博碩士論文 etd-0524115-222707 詳細資訊
Title page for etd-0524115-222707
論文名稱
Title
一種新型風力發電系統之強韌控制設計
Robust Control Design for A Novel Wind Power System
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
91
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-12
繳交日期
Date of Submission
2015-06-25
關鍵字
Keywords
不確定性、數位訊號處理器、H∞最佳化控制器、風力發電系統、強韌控制理論
wind turbine generator, uncertainty, H∞ optimal controller, DSP, robust control theory
統計
Statistics
本論文已被瀏覽 5689 次,被下載 51
The thesis/dissertation has been browsed 5689 times, has been downloaded 51 times.
中文摘要
在工程應用上,用來設計控制器的數學模型永遠無法精準地描述真實系統的動態行為,使兩者之間存在著模型誤差。模型誤差可能會導致系統的輸出表現不如預期甚至造成系統的不穩定,因此,強韌控制理論就此孕育而生。本論文以強韌控制理論的觀點來分析文獻[1]中所提出的新型風力發電系統,包含建立系統的數學模型、不確定性的考量、強韌穩定性與性能的度量標準及H∞最佳化控制器的設計,完成了一套完整的設計流程。

本論文的控制目標為風能最大功率追蹤控制、系統轉速追蹤控制與提升閉迴路系統的強韌性。為了驗證控制器的可行性,本論文以數值模擬軟體MATLAB建立受控系統,數位訊號處理器DSP實現控制器。透過兩者之間的資料傳輸,完成整個閉迴路系統的架構。根據實驗結果顯示,H∞最佳化控制器確實能有效地提升閉迴路系統的強韌穩定性並達到良好的輸出表現。
Abstract
Robustness is a very important topic in control-system design because real engineering systems are vulnerable to external disturbance and measurement noise and there are always difference between mathematical models and the actual system. In this thesis, we consider a robust stabilization problem over a new wind turbine generator system which was introduced in [1], the design process including modelling of uncertain system, robust stability and performance analysis, and robust controller design.

The design objective for the system is to find an H∞ optimal controller, which ensures the maximum power and speed tracking erorr of the system to be small. In order to verify the controller, the MATLAB, Simulink, and DSP are used in this application. We realize the controller by the DSP, eZdSP F28335. The simulation results shows that the closed-loop system with H∞ optimal controller achieves a satisfactory level of robust stability and robust performance.
目次 Table of Contents
中文摘要 i
英文摘要 ii
目錄 iii
圖次 vi
表次 ix
符號表 x
第 1 章 緒論 1
1.1 研究背景 1
1.1.1 世界風能概況 1
1.1.2 台灣風能概況 2
1.2 研究動機、目的與貢獻 3
1.3 論文架構 4
第 2 章 預備知識 6
2.1 帕克轉換6
2.2 線性化 6
2.3 離散化 9
2.3.1 取樣與保持 9
2.3.2 奈奎斯特取樣定理 10
2.4 強韌控制理論 10
2.4.1 H∞範數 10
2.4.2 小增益定理(Small-gain theorem)[2] 11
2.4.3 不確定性 11
2.4.4 線性分式變換 11
2.4.5 H∞ 最佳化控制器 13
2.5 模型降階 14
2.5.1 奇異擾動降階法 15
2.6 強韌穩定性與性能分析 16
2.6.1 奇異結構值 16
2.6.2 μ-Analysis 17
第 3 章 風力發電系統的數學模型 19
3.1 創新型激磁式風力發電系統簡介 19
3.2 描述系統的微分方程式 20
3.2.1 馬達電氣方程式 20
3.2.2 發電機電氣方程式 23
3.2.3 系統機械運動方程式 24
3.2.4 研究困難與限制 25
3.3 處理 25
3.3.1 消除時變項 25
3.3.2 消除非線性項 27
3.3.3 不確定性模型化 29
3.3.4 擾動系統的頻率響應分析 33
第 4 章 控制器設計與模擬驗證 35
4.1 設計架構與性能規格 35
4.1.1 系統設計架構 35
4.1.2 系統強韌穩定性與性能規格 39
4.2 MATLAB模擬驗證 41
4.2.1 系統的離散化 41
4.2.2 H∞最佳化控制器 42
4.2.3 閉迴路系統的強韌穩定度與性能表現分析 43
4.2.4 控制器降階 45
4.3 Simulink模擬與結果 46
4.3.1 模擬結果分析 48
第 5 章 DSP控制器實現與實驗 56
5.1 實驗設計與軟體 56
5.1.1 eZdSP F28335 56
5.1.2 Code Composer Studio 整合開發環境簡介 62
5.2 實驗與結果 64
5.2.1 實驗設定 64
5.2.2 實驗結果 64
第 6 章 結論與未來展望 71
6.1 結論 71
6.2 未來展望 71
參考文獻 73
參考文獻 References
[1] T. L. Chern, P. L. Pan, Y. L. Chern, W. T. Chern, W. M. Lin, C. C. Cheng, J. H. Chou, and L. C. Chen, “Excitation synchronous wind power generators with maximum power tracking scheme,” IEEE Transaction on Sustainable Energy, vol. 5, no. 4, pp.1090–1098, October 2014.
[2] C. A. Desoer and M. Vidyasagar, Feedback systems:Input-Output Properties. Academic Press, 1975.
[3] G.W.E.C, “Gobal wind report,” Tech. Rep., 2013.
[4] 張永源, “台灣風力發電之現況與展望,” 「環保資訊」月刊第182期, 2013.
[5] eZdSP F28335 Technical reference, Spectrum Digital, November 2007.
[6] 余勝雄, “我國風力發電現況與展望,” 台電公司電源開發處, 2010.
[7] 經濟部能源局, “中華民國102年能源統計手冊,” 2013.
[8] 國立臺灣海洋大學, “2013台灣風能研討會摘要論文集序言,” 2013.
[9] R. H. Park, “Two-reaction theory of synchronous machines-generalize method of analysis,” AIEE Transactions, vol. 48, pp. 716–727, July 1929.
[10] P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of Electric Machinery and Drive Systems. Wiley-Interscience, 2002, ch. 3, pp. 111–124.
[11] B. C. Kuo, Automatic Control Systems. Prentice-Hall International, 1987, ch. 4, pp. 179–185.
[12] H. Nyquist, “Certain topics in telegrah transmission theory,” AIEE Transactions, vol. 47, pp. 617–644, April 2002.
[13] M. Gopal, Digital Control and State Variable Methods : Conventional and Intelligent Control Systems, 3rd ed. Tata McGraw-Hill, 2009, ch. 2, p. 77.
[14] E. Solomentsev, Encyclopedia of Mathematics. Springer, 2001.
[15] R. M. Redheffer, “Remarks on the basis of network,” Journal of Mathematics and Physics, pp. 237–258, 1950.
[16] R. M. Redhefferr, “On a certain linear fractional trans transformation,” Journal of Mathematics and Physics, pp. 269–286, 1960.
[17] M. G. Safonov, “Stability margins of diagonally perturbed multivariable feedback systems,” in IEE Proceedings, vol. 129, 1982, pp. 251–256.
[18] P. Gahinet and P. Apkarian, “A linear matrix inequality approach to H1 control,” International Journal of Robust and Nonlinear Control, vol. 4, pp. 421–448, 1994.
[19] A. Packard, “Gain scheduling via linear fractional transformations,” Systems & Control Letters, vol. 22, pp. 79–92, 1994.
[20] J. C. Doyle, K. Glover, P. Khargonekar, and B. A. Francis, “State-space solutions to standard H2 and H1 control problems,” IEEE Transactions on Automatic Control, vol. 25, pp. 399–412, 1989.
[21] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control. Prentice-Hall, 1996.
[22] G. E. Dullerud and F. Paganini, A Course in Robust Control Theory : A Convex Approach. Springer, 2000, ch. 7, pp. 221–224.
[23] A. Rantzer, “On the kalman–yakubovich–popov lemma,” Systems & Control Letters, vol. 28, no. 1, pp. 7–10, 1996.
[24] Y. Liu and B. Anderson, “Singular perturbation of balanced systems,” International Journal of Control, vol. 50, no. 4, pp. 1379–1405, 1989.
[25] S. Al-Takrouri and Z. Gajic, “Discrete system order-reduction via balancing transformation using singular perturbations,” Rutgers, The State University of New Jersey Department of Electrical and Computer Engineering Piscataway, NJ 08854, USA.
[26] R. Samar, I. Postlethwaite, and D. W. Gu., “Model reduction with balanced realizations,” International Journal of Control, vol. 62, p. 33–64, 1995.
[27] D. Enns., “Model reduction with balanced realizations: An error bound and a frequency weighted generalization,” in Proceedings of the 23rd IEEE Conference on Decision and Control, Las Vegas, 1984, p. 127–132.
[28] B. C. Moore, “Principle component analysis in linear systems: Controllability, observability, and model reduction,” IEEE Transactions on Automatic Control, vol. 26, pp. 17–31, 1981.
[29] R. R. E. de Gason and M. G. Safonov, “Exact calculation of the multiloop stability margin,” IEEE Transaction on Automatic Control, vol. 33, pp. 156–171, 1988.
[30] J. Doyle, “Analysis of feedback systems with structured uncertainties,” in IEE Proceedings, vol. 129, 1982, pp. 242–250.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code