Responsive image
博碩士論文 etd-0524116-153742 詳細資訊
Title page for etd-0524116-153742
論文名稱
Title
Paricalcitol在isoproterenol所誘發心肌病變大鼠的作用與機轉研究
Investigation of the Effect and Mechanism of Paricalcitol in Isoproterenol Induced Cardiomyopathic Rats
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
101
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-16
繳交日期
Date of Submission
2016-06-24
關鍵字
Keywords
內皮細胞至中胚纖維細胞轉變、心肌病變、心臟衰竭、心臟纖維化、活性維他命D
endothelial-to-mesenchymal transition, cardiomyopathy, heart failure, vitamin D activator, cardiac fibrosis
統計
Statistics
本論文已被瀏覽 5682 次,被下載 603
The thesis/dissertation has been browsed 5682 times, has been downloaded 603 times.
中文摘要
在臨床上,急性冠心症(acute coronary syndrome)包括急性心肌梗塞(acute myocardial infarction)常會導致心臟收縮功能異常(systolic dysfunction)、心肌纖維化(cardiac fibrosis)及心臟衰竭(heart failure)。如何減緩急性心肌病變產生的心臟受損,是治療這類患者的重要議題。處理急性心肌病變(acute cardiomyopathy)例如急性冠心症,雖然已經有實證為基礎的指引所建議的療法,尋找更有效的藥物治療來改善心肌受損,仍然相當重要。在此論文中,我探討治療末期腎衰竭病患的維他命D活化藥物paricalcitol治療isoproterenol (ISO) (一種乙型腎上腺素受體促進劑與心臟毒劑)所誘發急性心肌病變大鼠,目前paricalcitol對急性心肌病變的作用及機轉仍未清楚。研究結果發現paricalcitol能減緩ISO所誘發急性心肌病變,改善心肌功能,減少心肌纖維化。同時更發現急性心肌病變過程中心肌內皮細胞標記會轉變為中胚纖維細胞標記的表現,細胞同時表現出兩種細胞標記。由研究結果推論paricalcitol減低ISO所誘發心肌纖維化,可能牽涉調控內皮細胞轉變為纖維母細胞表現的修復機制。期望藉此發現提供臨床上研究或治療的參考。
Abstract
In clinical practice, acute coronary syndrome containing acute myocardial infarction (AMI) often leads to systolic dysfunction, cardiac fibrosis and heart failure. How to minimize acute cardiac damage is a critical issue for treating patients with AMI. Although guidelines recommend evidence-based treatments for managing patient with acute cardiomyopathy, it remains really crucial to seek effective drugs to minimize acute cardiac damage and improve outcome. In the thesis, I investigated the effect and mechanism of paricalcitol, a vitamin D activator, on cardiomyopathic rats. Paricalcitol has been utilized for treating patients with advanced renal disease. However, the effect of paricalcitol in cardiomyopathic rats induced by isoproterenol (ISO, a beta adrenergic receptor agonist and a cardiotoxin) remain unclear. The results observed in the study showed that paricalcitol attenuated the severity of ISO-induced cardiac dysfunction and fibrosis. The study also found that endothelial-to-mesenchymal cell transition (EndoMT) occurred during the period of developing acute cardiomyopathy with colocalization of two different cell markers. The findings infer that the decrease in ISO-induced cardiac fibrosis by paricalcitol injections may be partially attributed to regulation of EndoMT by paricalcitol injections. We hope these findings will be helpful to further clinical researches and treatments.
目次 Table of Contents
國立中山大學研究生學位論文審定書 i
致謝 ii
摘要 iv
ABSTRACT v
INDEX v
FIGURES INDEX ix
TABLE INDEX xi
ABBREVIATIONS AND ACRONYMS xii
CHAPTER 1 1
Introduction 1
1.1 Acute Coronary Syndrome (ACS) 2
1.2 Inflammation Triggered in Acute Cardiomyopathy 4
1.3 ISO Induced Acute Cardiomyopathy 5
1.4 A Vitamin D Activator Paricalcitol 6
1.5 Endothelial-to-Mesenchymal Cell Transition (EndoMT) on Acute Cardiomyopathy 7
1.6 Hypothesis and Specific Aims 9
1.7 Experimental Design 10
CHAPTER 2 11
ISO induced acute cardiomyopathy 11
2.1 Background 12
2.2 Specific Aims 13
2.3 Materials and Methods 14
2.4 Results 18
2.5 Discussion 21
2.6 Figures and Legends 22
2.7 Table 26
CHAPTER 3 28
Effects of paricalcitol in ISO-treated rats 28
3.1 Background 29
3.2 Specific Aims 32
3.3 Materials and Methods 33
3.4 Results 36
3.5 Discussion 38
3.6 Figures and Legends 40
CHAPTER 4 46
Effects of paricalcitol on EndoMT in the ISO-treated rats 46
4.1 Background 47
4.2 Specific Aims 48
4.3 Materials and Methods 49
4.4 Results 52
4.5 Discussion 53
4.6 Figures and Legends 55
CHAPTER 5 59
Conclusions 59
Limitations and Future Perspectives 61
REFERENCES 65
PUBLICATIONS 81
CONFERENCE PRESENTATIONS 85
參考文獻 References
1. World Health Organization/Programmes and Projects / World Health Statistic Report. Available at:http://www.who.int/whosis/whostat/en/index.html Accessed August 25, 2014.
2. Mackay J, Mensah G, editors., The atlas of heart disease and stroke. World Health Organization; 2004. United Nations website. Available at:www.un.org/ Accessed August 25, 2014.
3. Lai CC, Yip HK, Lin TH, Wu CJ, Lai WT, Liu CP, Chang SC, Mar GY. (2014). Drug-eluting stents versus bare-metal stents in Taiwanese patients with acute coronary syndrome: an outcome report of multicenter registry. Acta Card Sin 30:553-564.
4. Lai CC, Lin TH, Yip HK, Liu CP, Li AH, Shyu KG, Chang SC, Mar GY. (2016). One-year cardiovascular outcomes of drug-eluting stent versus bare-metal stent implanted in diabetic patients with acute coronary syndrome. J Chin Med Assoc 79:239-247.
5. Lai CC, Chang KC, Liao PC, Wu CT, Lai WT, Wu CJ, Chang SC, Mar GY. (2015). Effects of door-to-balloon times on outcomes in Taiwanese patients receiving primary percutaneous coronary intervention: a report of Taiwan acute coronary syndrome registry. Acta Cardiol Sin 31:215-225.
6. Li M, Georgakopoulos D, Lu G, Hester L, Kass DA, Hasday J, Wang Y. (2005). p38 MAP kinase mediates inflammatory cytokine induction in cardiomyocytes and extracellular matrix remodeling in heart. Circulation 111:2494-2502.
7. He Q, Zhou W, Xiong C, Tan G, Chen M. (2015). Lycopene attenuates inflammation and apoptosis in post-myocardial infarction remodeling by inhibiting the nuclear factor-κB signaling pathway. Mol Med Rep. 11:374-378.
8. Lei J, Xue S, Wu W, Zhou S, Zhang Y, Yuan G, Wang J. (2013). Sdc1 overexpression inhibits the p38 MAPK pathway and lessens fibrotic ventricular remodeling in MI rats. Inflammation 36:603-615.
9. Aisagbonhi O, Rai M, Ryzhov S, Atria N, Feoktistov I, Hatzopoulos AK. (2011). Experimental myocardial infarction triggers canonical Wnt signaling and endothelial-to-mesenchymal transition. Dis Models Mech 4:469-483.
10. Okayama K, Azuma J, Dosaka N, Iekushi K, Sanada F, Kusunoki H, Iwabayashi M, Rakugi H, Taniyama Y, Morishita R. (2012). Hepatocyte growth factor reduces cardiac fibrosis by inhibiting endothelial-mesenchymal transition. Hypertension 59:958-965.
11. Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT, Roberts AB, Neilson EG, Sayegh MH, Izumo S, Kalluri R. (2007). Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13:952-961.
12. Kovacic JC, Mercader N, Torres M, Boehm M, Fuster V. (2012). Epithelial-to-mesenchymal and endothelial-to-mesenchymal transition from cardiovascular development to disease. Circulation 125:1795-1808.
13. Ghosh AK, Nagpal V, Covington JW, Michaels MA, Vaughan DE. (2012). Molecular basis of cardiac endothelial-to-mesenchymal transition (EndMT): Differential expression of microRNAs during EndMT. Cell Signal 24:1031-1036.
14. Widyantoro B, Emoto N, Nakayama K, Anggrahini DW, Adiarto S, Iwasa N, Yagi K, Miyagawa K, Rikitake Y, Suzuki T, Kisanuki YY, Yanagisawa M, Hirata K. (2010). Endothelial cell–derived endothelin-1 promotes cardiac fibrosis in diabetic hearts through stimulation of endothelial-to-mesenchymal transition. Circulation 121:2407-2418.
15. Kanashiro-Takeuchi RM, Tziomalos K, Takeuchi LM, Treuer AV, Lamirault G, Dulce R, Hurtado M, Song Y, Block NL, Rick F, Klukovits A, Hu Q, Varga JL, Schally AV, Hare JM. (2010). Cardioprotective effects of growth hormone-releasing hormone agonist after myocardial infarction. PNAS 107:2604-2609.
16. Chen J, Chemaly ER, Liang LF, LaRocca TJ, Yaniz-Galende E, Hajjar RJ. (2011). A new model of congestive heart failure in rats. Am J Physiol Heart Circ Physiol 301:H994-1003.
17. Okuyama Y, Miyauchi Y, Park AM, Hamabe A, Zhou S, Hayashi H, Miyauchi M, Omichi C, Pak HN, Brodsky LA, Mandel WJ, Fishbein MC, Karagueuzian HS, Chen PS. (2003). High resolution mapping of the pulmonary vein and the vein of Marshall during induced atrial fibrillation and atrial tachycardia in a canine model of pacing-induced congestive heart failure. J Am Coll Cardiol 42:348-60.
18. Nissen JD, Thomsen MB, Bentzen BH, Diness JG, Diness TG, Jespersen T, Grunnet M. (2012). Attenuated ventricular β-adrenergic response and reduced repolarization reserve in a rabbit model of chronic heart failure. J Cardiovasc Pharmacol 59:142-150.
19. Yeager JC, Iams SG. (1981). The hemodynamics of isoproterenol-induced cardiac failure in the rat. Circ Shock 8:151-163.
20. Woodiwiss AJ, Tsotetsi OJ, Sprott S, Lancaster EJ, Mela T, Chung ES, Meyer TE, Norton GR. (2001). Reduction in myocardial collagen cross-linking parallels left ventricular dilatation in rat models of systolic chamber dysfunction. Circulation 103:155-160.
21. Grimm D, Elsner D, Schunkert H, Pfeifer M, Griese D, Bruckschlegel G, Muders F, Riegger GA, Kromer EP. (1998). Development of heart failure following isoproterenol administration in the rat: role of the renin-angiotensin system. Cardiovasc Res 37:91-100.
22. Krenek P, Kmecova J, Kucerova D, Bajuszova Z, Musil P, Gazova A, Ochodnicky P, Klimas J, Kyselovic J. (2009). Isoproterenol-induced heart failure in the rat is associated with nitric oxide-dependent functional alterations of cardiac function. Euro J of Heart Fail 11:140-146.
23. Feng W, Li W. (2010). The study of ISO induced heart failure rat model. Exp and Mol Pathol 88:299-304.
24. Goyal S, Arora S, Mittal R, Joshi S, Nag TC, Ray R, Kumari S, Arya DS. (2009). Myocardial salvaging effect of telmisartan in experimental model of myocardial infarction. Eur J Pharmacol 619:75-84.
25. Zaitone SA, Abo-Gresha NM. (2012). Rosuvastatin promotes angiogenesis and reverses isoproterenol-induced acute myocardial infarction in rats: role of iNOS and VEGF. Eur J Pharmacol 691:134-142.
26. Takeshita D, Shimizu J, Kitagawa Y, Yamashita D, Tohne K, Nakajima-Takenaka C, Ito H, Takaki M. (2008). Isoproterenol-induced hypertrophied rat hearts: does short-term treatment correspond to long-term treatment? J Physiol Sci 58:179-188.
27. Shibata M, Takeshita D, Obata K, Mitsuyama S, Ito H, Zhang GX, Takaki M. (2011). NHE-1 participates in isoproterenol-induced downregulation of SERCA2a and development of cardiac remodeling in rat hearts. Am J Physiol Heart Circ Physiol 301:2154-2160.
28. Nandave M, Mohanty I, Nag TC, Ojha SK, Mittal R, Kumari S, Arya DS. (2007). Cardioprotective response to chronic administration of vitamin e in isoproterenol induced myocardial necrosis: hemodynamic, biochemical and ultrastructural studies. Indian J Clinical Biochem 22:22-28.
29. Brady S, York M, Scudamore C, Williams T, Griffiths W, Turton J. (2010). Cardiac troponin I in isoproterenol-induced cardiac injury in the Hanover Wistar rat: studies on low dose levels and routes of administration. Toxicol Pathol 38:287-291.
30. Remião F, Carmo H, Carvalho F, Bastos ML. (2001). Copper enhances isoproterenol toxicity in isolated rat cardiomyocytes: effects on oxidative stress. Cardiovasc Toxicol 1:195-204.
31. Limas CJ, Limas C. (1984). Rapid recovery of cardiac β-adrenergic receptors after isoproterenol-induced "down"-regulation. Circ Res 55:524-531.
32. Liao Y, Asakura M, Takashima S, Ogai A, Asano Y, Shintani Y, Minamino T, Asanuma H, Sanada S, Kim J, Kitamura S, Tomoike H, Hori M, Kitakaze M. (2004). Celiprolol, a vasodilatory β-blocker, inhibits pressure overload–induced cardiac hypertrophy and prevents the transition to heart failure via nitric oxide–dependent mechanisms in mice. Circulation 110:692-699.
33. Bendall JK, Damy T, Ratajczak P, Loyer X, Monceau V, Marty I, Milliez P, Robidel E, Marotte F, Samuel JL, Heymes C. (2004). Role of myocardial neuronal nitric oxide synthase–derived nitric oxide in β-adrenergic hyporesponsiveness after myocardial infarction-induced heart failure in rat. Circulation 10:2368-2375.
34. Xiang Y, Naro F, Zoudilova M, Jin SL, Conti M, Kobilka B. (2005). Phosphodiesterase 4D is required for β2 adrenoceptorsubtype-specific signaling in cardiac myocytes. PNAS 102:909-914.
35. Stangherlin A, Gesellchen F, Zoccarato A, Terrin A, Fields LA, Berrera M, Surdo NC, Craig MA, Smith G, Hamilton G, Zaccolo M. (2011). cGMP signals modulate cAMP levels in a compartment-specific manner to regulate catecholamine-dependent signaling in cardiac myocytes. Circ Res 108:929-939.
36. Reiken S, Gaburjakova M, Guatimosim S, Gomez AM, D'Armiento J, Burkhoff D, Wang J, Vassort G, Lederer WJ, Marks AR. (2003). Protein kinase A phosphorylation of the cardiac calcium release channel (ryanodine receptor) in normal and failing hearts. J Biol Chem 3:278:444-453.
37. Xiao B, Jiang MT, Zhao M, Yang D, Sutherland C, Lai FA, Walsh MP, Warltier DC, Cheng H, Chen SR. (2005). Characterization of a novel PKA phosphorylation site, serine-2030, reveals no PKA hyperphosphorylation of the cardiac ryanodine receptor in canine heart failure. Circ Res 96:847-855.
38. Xiao B, Zhong G, Obayashi M, Yang D, Chen K, Walsh MP, Shimoni Y, Cheng H, Ter Keurs H, Chen SR. (2006). Ser-2030, but not Ser-2808, is the major phosphorylation site in cardiac ryanodine receptors responding to protein kinase A activation upon β-adrenergic stimulation in normal and failing hearts. J Biochem 396:7–16.
39. He BJ, Joiner ML, Singh MV, Luczak ED, Swaminathan PD, Koval OM, Kutschke W, Allamargot C, Yang J, Guan X, Zimmerman K, Grumbach IM, Weiss RM, Spitz DR, Sigmund CD, Blankesteijn WM, Heymans S, Mohler PJ, Anderson ME. (2011). Oxidation of CaMKII determines the cardiotoxic effects of aldosterone. Nat med 17:1610-1619.
40. Oudit GY, Crackower MA, Eriksson U, Sarao R, Kozieradzki I, Sasaki T, Irie-Sasaki J, Gidrewicz D, Rybin VO, Wada T, Steinberg SF, Backx PH, Penninger JM. (2003). Phosphoinositide 3-kinase γ–deficient mice are protected from isoproterenol-induced heart failure. Circulation 108:2147-2152.
41. Münzel F, Mühlhäuser U, Zimmermann WH, Didié M, Schneiderbanger K, Schubert P, Engmann S, Eschenhagen T, Zolk O. (2005). Endothelin-1 and isoprenaline co-stimulation causes contractile failure which is partially reversed by MEK inhibition. Cardiovasc Res 68:464-474.
42. Tshori S, Gilon D, Beeri R, Nechushtan H, Kaluzhny D, Pikarsky E, Razin E. (2006). Transcription factor MITF regulates cardiac growth and hypertrophy. J Clin Invest 116:2673-2681.
43. Brooks WW, Conrad CH, Robinson KG, Colucci WS, Bing OH. (2009). L-arginine fails to prevent ventricular remodeling and heart failure in the spontaneously hypertensive rat. Am J Hypertens 22:228-234.
44. Yan C, Ding B, Shishido T, Woo CH, Itoh S, Jeon KI, Liu W, Xu H, McClain C, Molina CA, Blaxall BC, Abe J. (2007). Activation of extracellular signal-regulated kinase 5 reduces cardiac apoptosis and dysfunction via inhibition of a phosphodiesterase 3A/inducible cAMP early repressor feedback loop. Circ Res 100:510-519.
45. Wang N, Guan P, Zhang JP, Li YQ, Chang YZ, Shi ZH, Wang FY, Chu L. (2011). Fasudil hydrochloride hydrate, a rho-kinase inhibitor, suppresses isoproterenol-induced heart failure in rats via JNK and ERK1/2 pathways. J of Cell Biochem 112:1920-1929.
46. Fielitz J, Kim MS, Shelton JM, Qi X, Hill JA, Richardson JA, Bassel-Duby R, Olson EN. (2008). Requirement of protein kinase D1 for pathological cardiac remodeling. PNAS 105:3059-3063.
47. Börgermann J, Lazouski K, Kuhn J, Dreier J, Schmidt M, Gilis-Januszewski T, Knabbe C, Gummert JF, Zittermann A. (2012). 1,25-Dihydroxyvitamin D fluctuations in cardiac surgery are related to age and clinical outcome. Crit Care Med 40:2073-2081.
48. Quraishi SA, Bittner EA, Blum L, McCarthy CM, Bhan I, Camargo CA Jr. (2014). Prospective study of vitamin D status at initiation of care in critically ill surgical patients and risk of 90-day mortality. Crit Care Med 42:1365-1371.
49. Braun AB, Gibbons FK, Litonjua AA, Giovannucci E, Christopher KB. (2012). Low serum 25-hydroxyvitamin D at critical care initiation is associated with increased mortality. Crit Care Med 40:63-72.
50. Tamez H, Zoccali C, Packham D, Wenger J, Bhan I, Appelbaum E, Pritchett Y, Chang Y, Agarwal R, Wanner C, Lloyd-Jones D, Cannata J, Thompson BT, Andress D, Zhang W, Singh B, Zehnder D, Pachika A, Manning WJ, Shah A, Solomon SD, Thadhani R. (2012). Vitamin D reduces left atrial volume in patients with left ventricular hypertrophy and chronic kidney disease. Am Heart J 164:902-909.e2.
51. Teng M, Wolf M, Lowrie E, Ofsthun N, Lazarus JM, Thadhani R. (2003). Survival of patients undergoing hemodialysis with paricalcitol or calcitriol therapy. N Engl J Med 349:446-456.
52. Thadhani R, Appelbaum E, Chang Y, Pritchett Y, Bhan I, Agarwal R, Zoccali C, Wanner C, Lloyd-Jones D, Cannata J, Thompson T, Audhya P, Andress D, Zhang W, Ye J, Packham D, Singh B, Zehnder D, Manning WJ, Pachika A, Solomon SD. (2011). Vitamin D receptor activation and left ventricular hypertrophy in advanced kidney disease. Am J Nephrol 33:139-149.
53. Panizo S, Barrio-Vázquez S, Naves-Díaz M, Carrillo-López N, Rodríguez I, Fernández-Vázquez A, Valdivielso JM, Thadhani R, Cannata-Andía JB. (2013). Vitamin D receptor activation, left ventricular hypertrophy and myocardial fibrosis. Nephrol Dial Transplant 28:2735-2744.
54. Bae S, Yalamarti B, Ke Q, Choudhury S, Yu H, Karumanchi SA, Kroeger P, Thadhani R, Kang PM. (2011). Preventing progression of cardiac hypertrophy and development of heart failure by paricalcitol therapy in rats. Cardiovasc Res 91:632-639.
55. Kong J, Kim GH, Wei M, Sun T, Li G, Liu SQ, Li X, Bhan I, Zhao Q, Thadhani R, Li YC. (2010). Therapeutic effects of vitamin D analogs on cardiac hypertrophy in spontaneously hypertensive rats. Am J Pathol 177:622-631.
56. Mizobuchi M, Nakamura H, Tokumoto M, Finch J, Morrissey J, Liapis H, Slatopolsky E. (2010). Myocardial effects of VDR activators in renal failure. J Steroid Biochem Mol Biol 121:188-192.
57. Meems LM, Cannon MV, Mahmud H, Voors AA, van Gilst WH, Silljé HH, Ruifrok WP, de Boer RA. (2012). The vitamin D receptor activator paricalcitol prevents fibrosis and diastolic dysfunction in a murine model of pressure overload. J Steroid Biochem Mol Biol 132:282-289.
58. Choi JH, Ke Q, Bae S, Lee JY, Kim YJ, Kim UK, Arbeeny C, Thadhani R, Kang PM. (2011). Doxercalciferol, a pro-hormone of vitamin d, prevent the development of cardiac hypertrophy is rats. J of Cardiac Fail 17:1051-1058.
59. Mancuso P, Rahman A, Hershey SD, Dandu L, Nibbelink KA, Simpson RU. (2008). 1,25-Dihydroxyvitamin-D3 treatment reduces cardiac hypertrophy and left ventricular diameter in spontaneously hypertensive heart failure-prone (cp/+) rats independent of changes in serum leptin. J Cardiovasc Pharmacol 51:559-564.
60. Bodyak N, Ayus JC, Achinger S, Shivalingappa V, Ke Q, Chen YS, Rigor DL, Stillman I, Tamez H, Kroeger PE, Wu-Wong RR, Karumanchi SA, Thadhani R, Kang PM. (2007). Activated vitamin D attenuates left ventricular abnormalities induced by dietary sodium in Dahl salt-sensitive animals. Proc Natl Acad Sci 104:16810-16815.
61. McGrath JC, Drummond GB, McLachlan EM, Kilkenny C, Wainwright CL. (2010). Guidelines for reporting experiments involving animals: the ARRIVE guidelines. Brit J Pharmacol 160:1573-1576.
62. Yeh TC, Liu CP, Cheng WH, Chen BR, Lu PJ, Cheng PW, Ho WY, Sun GC, Liou JC, Tseng CJ. (2014). Caffeine intake improves fructoseinduced hypertension and insulin resistance by enhancing central insulin signaling. Hypertension 63:535-541.
63. Sahn DJ, DeMaria A, Kisslo J, Weyman A. (1978). Recommendations regarding quantitation in M-mode echocardiography: Results of a survey of echocardiographic measurements. Circulation 58:1072-1083.
64. Watson LE, Sheth M, Denyer RF, Dostal DE. (2004). Baseline echocardiographic values for adult male rats. J Am Soc Echocardiogr 17:161-167.
65. Arias T, Chen J, Fayad ZA, Fuster V, Hajjar RJ, Chemaly ER. (2013). Comparison of echocardiographic measurements of left ventricular volumes to full volume magnetic resonance imaging in normal and diseased rats. J Am Soc Echocardiogr 26:910-918.
66. Holick MF. Vitamin D deficiency. (2007). N Engl J Med. 357:266-281. (Review).
67. Arcidiacono T, Paloschi V, Rainone F, Terranegra A, Dogliotti E, Aloia A, Soldati L, Vezzoli G. (2009). Renal osteodystrophy and vascular clacification. J Endocrinol Invest 32:21-26.
68. Thorin E, Henrion D, Oster L, Thorin-Trescases N, Capdeville C, Martin JA, Chillon JM, Hicks PE, Atkinson J. (1990). Vascular calcium overload produced by administration of vitamin D3 and nicotine in rats: Changes in tissue calcium levels, blood pressure, and pressor responses to electrical stimulation or norepinephrine in vivo. J Cardiovasc Pharmacol 16:257-266.
69. Zhou C, Lu F, Cao K, Xu D, Goltzman D, Miao D. (2008). Calcium- independent and 1,25(OH)2D3-dependent regulation of the renin-angiotensin system in 1α-hydroxylase knockout mice. Kidney Int 74:170-179.
70. Akeno N, Saikatsu S, Kawane T, Horiuchi N. (1997). Mouse vitamin D-24-hydroxylase: molecular cloning, tissue distribution, and transcriptional regulation by 1-alpha, 25-dihydroxyvitamin D3. Endocrinology 138:2233-2240.
71. Chen S, Law CS, Grigsby CL, Olsen K, Hong TT, Zhang Y, Yeghiazarians Y, Gardner DG. (2011). Cardiomyocyte-specific deletion of the vitamin d receptor gene results in cardiac hypertrophy. Circulation 124:1838-1847.
72. Simpson RU, Hershey SH, Nibbelink KA. (2007). Characterization of heart size and blood pressure in the vitamin D receptor knockout mouse. J Steroid Biochem and Mol Biol 103:521-524.
73. Bikle D. (2009). Nonclassic Actions of Vitamin D. J Clin Endocrinol Metab 94:26-34. (Review).
74. Andress D. (2007). Nonclassical aspects of differential vitamin D receptor activation implications for survival in patients with chronic kidney disease. Drugs 67:1999-2012. (Review).
75. Anderson JL, May HT, Horne BD, Bair TL, Hall NL, Carlquist JF, Lappé DL, Muhlestein JB; Intermountain Heart Collaborative (IHC) Study Group. (2010). Relation of vitamin D deficiency to cardiovascular risk factors, disease status, and incident events in a general healthcare population. Am J Cardiol 106:963-968.
76. Kendrick J, Targher G, Smits G, Chonchol M. (2009). 25-Hydroxyvitamin D deficiency is independently associated with cardiovascular disease in the Third National Health and Nutrition Examination Survey. Atherosclerosis 205:255-260.
77. Achinger SG, Ayus JC. (2005). The role of vitamin D in left ventricular hypertrophy and cardiac function. Kidney Int Suppl 95:S37-S42.
78. Pilz S, Tomaschitz A, Ritz E, Pieber TR. (2009). Vitamin D status and arterial hypertension: a systematic review. Nat Rev Cardiol 6:621-630.
79. Giovannucci E, Liu Y, Hollis BW, Rimm EB. (2008). 25-hydroxyvitamin D and risk of myocardial infarction in men: a prospective study. Arch Intern Med 168:1174-1180.
80. Drechsler C, Pilz S, Obermayer-Pietsch B, Verduijn M, Tomaschitz A, Krane V, Espe K, Dekker F, Brandenburg V, März W, Ritz E, Wanner C. (2010). Vitamin D deficiency is associated with sudden cardiac death, combined cardiovascular events, and mortality in haemodialysis patients. Eur Heart J 31:2253-2261.
81. Chonchol M, Cigolini M, Targher G. (2008). Association between 25-hydroxyvitamin D deficiency and cardiovascular disease in type 2 diabetic patients with mild kidney dysfunction. Nephrol Dial Transplant 23:269-274.
82. Lee JH, Gadi R, Spertus JA, Tang F, O'Keefe JH. (2011). Prevalence of vitamin D deficiency in patients with acute myocardial infarction. Am J Cardiol 107:1636-1638.
83. Rautiainen S, Akesson A, Levitan EB, Morgenstern R, Mittleman MA, Wolk A. (2010). Multivitamin use and the risk of myocardial infarction: a population-based cohort of Swedish women. Am J Clin Nutr 92:1251-1256.
84. Hsia J, Heiss G, Ren H, Allison M, Dolan NC, Greenland P, Heckbert SR, Johnson KC, Manson JE, Sidney S, Trevisan M. (2007). Calcium/vitamin D supplementation and cardiovascular events. Circulation 115:846-854.
85. Artaza JN, Mehrotra R, Norris KC. (2009). Vitamin D and the cardiovascular system. Clin J Am Soc Nephrol 4:1515-1522. (Review).
86. Reinhart GA. (2004).Vitamin D analogs: novel therapeutic agents for cardiovascular disease? Curr Opin Investig Drugs 5:947-951. (Review).
87. Mertens PR, Müller R. (2010). Vitamin D and cardiovascular risk. Int Urol Nephrol 42:165-171. (Review).
88. Luong KV, Nguyen LT. (2006). Vitamin D and Cardiovascular Disease. Curr Med Chem 13:2443-2447. (Review).
89. Chen S, Glenn DJ, Ni W, Grigsby CL, Olsen K, Nishimoto M, Law CS, Gardner DG. (2008). Expression of the vitamin D receptor is increased in the hypertrophic heart. Hypertension 52:1106-1112.
90. Thadhani R, Appelbaum E, Pritchett Y, Chang Y, Wenger J, Tamez H, Bhan I, Agarwal R, Zoccali C, Wanner C, Lloyd-Jones D, Cannata J, Thompson BT, Andress D, Zhang W, Packham D, Singh B, Zehnder D, Shah A, Pachika A, Manning WJ, Solomon SD. (2012). Vitamin D therapy and cardiac structure and function in patients with chronic kidney disease: The PRIMO randomized controlled trial. JAMA 307:674-684.
91. Finch JL, Brown AJ, Slatopolsky E. (1999). Differential effects of 1,25-dihydroxy-vitamin D3 and 19-nor-1,25-dihydroxy-vitamin D2 on calcium and phosphorus resorption in bone. J Am Soc Nephrol 10:980-985.
92. Piera-Velazquez S, Li Z, Jimenez SA. (2011). Role of Endothelial-Mesenchymal Transition (EndoMT) in the Pathogenesis of Fibrotic Disorders. Am J Path 179:1074-1080. (Review).
93. van Meeteren LA, ten Dijke P. (2012). Regulation of endothelial cell plasticity by TGF-β. Cell Tissue Res 347:177-186. (Review).
94. Ghosh AK, Nagpal V, Covington JW, Michaels MA, Vaughan DE. (2012). Molecular basis of cardiac endothelial-to-mesenchymal transition (EndMT): differential expression of micrornas during EndMT. Cell Signal 24:1031-1036.
95. Widyantoro B, Emoto N, Nakayama K, Anggrahini DW, Adiarto S, Iwasa N, Yagi K, Miyagawa K, Rikitake Y, Suzuki T, Kisanuki YY, Yanagisawa M, Hirata K. (2010). Endothelial cell–derived endothelin-1 promotes cardiac fibrosis in diabetic hearts through stimulation of endothelial-to-mesenchymal transition. Circulation 121:2407-2418.
96. Ghosh AK, Bradham WS, Gleaves LA, De Taeye B, Murphy SB, Covington JW, Vaughan DE. (2010). Genetic deficiency of plasminogen activator inhibitor-1 promotes cardiac fibrosis in aged mice: involvement of constitutive transforming growth factor-beta signaling and endothelial-to-mesenchymal transition. Circulation 122:1200-1209.
97. Tang R, Gao M, Wu M, Liu H, Zhang X, Liu B. (2012). High glucose mediates endothelial-to-chondrocyte transition in human aortic endothelial cells. Cardiovas Diab 11:113
98. Tang RN, Lv LL, Zhang JD, Dai HY, Li Q, Zheng M, Ni J, Ma KL, Liu BC. (2013). Effects of angiotensin II receptor blocker on myocardial endothelial-to-mesenchymal transition in diabetic rats. Int J Card 162:92–99.
99. Yoshimatsu Y, Watabe T. (2011). Roles of TGF-β signals in endothelial-mesenchymal transition during cardiac fibrosis. Int J Inflam 2011:724080. (Review).
100. Krenning G, Zeisberg EM, Kalluri R. (2010). The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol 225:631-637.
101. Lee TW, Kao YH, Lee TI, Chang CJ, Lien GS, Chen YJ. (2014). Calcitriol modulates receptor for advanced glycation end products (RAGE) in diabetic hearts. Int J Cardiol 173:236-241.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code