Responsive image
博碩士論文 etd-0524118-171959 詳細資訊
Title page for etd-0524118-171959
論文名稱
Title
新日本靈芝水萃取物抑制 RANKL 誘導 RAW 264.7 小鼠巨噬細胞分化成蝕骨細胞的效應
Ganoderma neo-japonicum extracts inhibit RANKL-induced osteoclastogenesis in RAW 264.7 murine macrophages
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
63
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-06-21
繳交日期
Date of Submission
2018-06-24
關鍵字
Keywords
NFATc1、第一型血紅素氧化酶、蝕骨細胞、新日本靈芝
NFATc1, Heme oxygenase-1, Osteoclast, Ganoderma neo-japonicum
統計
Statistics
本論文已被瀏覽 5809 次,被下載 1
The thesis/dissertation has been browsed 5809 times, has been downloaded 1 times.
中文摘要
儘管目前已有許多藥物可用於治療停經後骨質疏鬆症,但是對於低副作用的替代藥物還是有其需求,本研究主要在評估新日本靈芝水萃物(GNES)對RANKL誘發蝕骨細胞生成的效應並探討其作用機制,結果顯示GNES依劑量效應不僅抑制RAW 264.7小鼠吞噬細胞分化成蝕骨細胞,且會抑制骨質吸收坑洞(resorption pit)的生成,在作用機制的結果亦發現,GNES會增加細胞HO-1蛋白表現,降低細胞內活性氧生成及減少NFATc1蛋白進入細胞核內,以HO-1 siRNA抑制細胞HO-1蛋白表現,發現可逆轉GNES抑制蝕骨細胞分化,活性氧生成及核內NFATc1蛋白表現的效應,意指GNES可透過增加HO-1蛋白來減少NFATc1蛋白調控的蝕骨細胞生成。關於調控HO-1蛋白表現的訊息路徑,我們發現GNES會誘導磷酸化Akt蛋白表現,且同時伴隨Nrf2蛋白進入細胞核及受ARE序列驅動的冷光酵素活性,這些結果顯示GNES可藉由調控 Akt-Nrf2-HO-1 路徑降低細胞內活性氧生成,抑制NFATc1核轉位及蝕骨細胞分化。
Abstract
Although several current therapeutic drugs for postmenopausal osteoporosis are available, there is a need for alternatives with minimal side effects. The aim of this study was to evaluate the effects of water extract of Ganoderma neo-japonicum (GNES) on RANKL- induced osteoclast differentiation and investigated the underlying molecular mechanism(s) of action. GNES not only inhibited osteoclast formation of RAW 264.7 mouse macrophages, but also inhibited resorption pit formation in a dose-dependent manner. Mechanistically, GNES increased heme oxygenase-1 (HO-1) expression, and attenuated intracellular ROS production and nuclear translocation of nuclear factor of activated T-cells NFATc1, the master transcription regulator of osteoclast differentiation. Inhibition of HO-1 expression with HO-1 siRNA could reverse the inhibitory effect of GNES on osteoclast differentiation, ROS production and nuclear translocation of NFATc1, suggesting that HO-1 contributed to the attenuation of NFATc1-mediated osteoclastogenesis by GNES. In regarding to the signaling pathways regulating HO-1 expression, we found that GNES could induce Akt1 phosphorylation at Ser473, coincidentally with nuclear translocation of Nrf2 and enhancement of antioxidant response element (ARE)- driven luciferase activity. These results indicated the inhibitory effect of GNES on osteoclast differentiation is due to the decrease of ROS production, via the enhancement of Akt-Nrf2-HO-1 pathway, which ultimately suppresses NFATc1 translocation to nucleus.
目次 Table of Contents
目錄
論文審定書 i
誌謝 ii
摘 要 iii
Abstract iv
目錄 vi
圖次 ix
表次 x
附錄 xi
第一章 文獻回顧 1
第一節 骨母細胞與蝕骨細胞在維持骨質平衡上的角色 1
第二節 骨質疏鬆 1
2-1 簡介 1
2-2 臨床治療骨質疏鬆之藥物及副作用 2
第三節 RANKL 誘導蝕骨細胞的訊息傳遞 3
3.1轉錄因子NFATc1 3
3.2 活性氧(ROS)在RANKL誘導蝕骨細胞生成的角色 4
第四節 第一型血紅素氧化酶(heme oxygenase-1, HO-1)調控蝕骨細胞生成的角色 4
第五節 靈芝組成對HO-1蛋白及蝕骨細胞生成的效應 4
第六節 研究動機與目的 5
第二章 研究方法 6
第一節 儀器及藥品 6
一、 細胞 6
二、 儀器相關設備 6
三、 藥品試劑 7
第二節 實驗方法 8
一、 新日本靈芝水萃物的製備 8
二、 細胞培養 9
三、 蝕骨細胞之分化 9
四、 細胞存活率分析 9
五、 過氧化物質(ROS)含量分析 9
六、 細胞轉染 (Transfection) 10
七、 細胞蛋白萃取 11
八、 西方墨點法分析 (Western blotting) 12
九、 細胞免疫螢光染色 13
十、 mRNA 表現量測定 14
十一、 酒石酸具耐受性酸性磷酸酵素染色法 15
十二、 酒石酸具耐受性酸性磷酸酵素活性測定 15
十三、 重吸收試驗 (Resorption assay) 16
十四、 MMP-9酵素活性染色圖譜 (Gelatin Zymography) 16
十五、 統計分析 16
第三章 結果 17
第一節 GNES合併 RANKL 處理對 RAW 264.7 細胞的毒性效應 17
第二節 GNES對 RANKL 誘導蝕骨細胞生成的抑制效應 17
第三節 GNES對蝕骨細胞骨基質在吸收功能的影響 18
第四節 GNES 抑制蝕骨細胞MMP-9活性的能力 18
第五節 GNES抑制蝕骨細胞基因表現的能力 18
第六節 GNES對RANKL誘導RAW 264.7 細胞NFATc1蛋白轉位的影響 19
第七節 GNES處理對RANKL誘發RAW 264.7細胞活性氧生成的影響 19
第八節 單獨GNES及合併RANKL處理對RAW264.7細胞HO-1蛋白表現的影響 19
第九節 HO-1蛋白在調控GNES抑制蝕骨細胞生成的角色 20
第十節 GNES誘發細胞Nrf2蛋白轉錄活化 20
第十一節 探討MAP kinase, PI3K-Akt訊息傳遞在GNES調控Nrf 2轉錄活化的角色 21
第四章 問題與討論 22
參考文獻 24
圖次 29
表次 47
附錄 49


圖次
圖 一、新日本靈芝Ganoderna neojaponicum 29
圖 二、新日本靈芝水萃物製備流程 30
圖 三、評估GNES合併處理RANKL對RAW264.7小鼠巨噬細胞的毒性效應 31
圖 四、GNES對RANKL誘導RAW 264.7細胞分化成蝕骨細胞的影響 32
圖 五、GNES抑制蝕骨細胞再吸收的能力 33
圖 六、GNES抑制蝕骨細胞MMP-9蛋白活性 34
圖 七、GNES對RANKL誘導RAW 264.7細胞分化再吸收功能基因的表現 35
圖 八、GNES對RANKL誘導RAW 264.7 細胞NFATc1蛋白分布的影響 36
圖 九、GNES在抑制RANKL誘發RAW 264.7細胞活性氧生成的效應 37
圖 十、GNES單獨及合併RANKL處理對RAW 264.7細胞HO-1蛋白及基因表現 38
圖 十一、HO-1蛋白在調控GNES抑制蝕骨細胞生成的角色 40
圖 十二、GNES誘發細胞Nrf2蛋白轉錄活化 44
圖 十三、MAP kinase, PI3K-Akt抑制劑對GNES調控HO-1蛋白生成的影響 45
圖 十四、GNES抑制蝕骨細胞分化假說圖 46


表次
表 一、siRNA sequence 47
表 二、semi qPCR primer 48


附錄
附錄 一 49
附錄 二 50
參考文獻 References
Uncategorized References
Aliprantis, A. O., Ueki, Y., Sulyanto, R., Park, A., Sigrist, K. S., Sharma, S. M., . . . Glimcher, L. H. (2008). NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism. J Clin Invest, 118(11), 3775-3789. doi:10.1172/JCI35711
Asagiri, M., & Takayanagi, H. (2007). The molecular understanding of osteoclast differentiation. Bone, 40(2), 251-264. doi:10.1016/j.bone.2006.09.023
Aubin, J. E., & Bonnelye, E. (2000). Osteoprotegerin and its ligand: A new paradigm for regulation of osteoclastogenesis and bone resorption. Medscape Womens Health, 5(2), 5.
Bak, S. U., Kim, S., Hwang, H. J., Yun, J. A., Kim, W. S., Won, M. H., . . . Kim, Y. M. (2017). Heme oxygenase-1 (HO-1)/carbon monoxide (CO) axis suppresses RANKL-induced osteoclastic differentiation by inhibiting redox-sensitive NF-kappaB activation. BMB Rep, 50(2), 103-108.
Black, D. M., & Rosen, C. J. (2016). Postmenopausal Osteoporosis. New England Journal of Medicine, 374(3), 254-262. doi:10.1056/NEJMcp1513724
Cauley, J. A., Norton, L., Lippman, M. E., Eckert, S., Krueger, K. A., Purdie, D. W., . . . Ste-Marie, L. G. (2001). Continued breast cancer risk reduction in postmenopausal women treated with raloxifene: 4-year results from the MORE trial. Multiple outcomes of raloxifene evaluation. Breast Cancer Res Treat, 65(2), 125-134.
Charles, J. F., & Aliprantis, A. O. (2014). Osteoclasts: more than 'bone eaters'. Trends Mol Med, 20(8), 449-459. doi:10.1016/j.molmed.2014.06.001
Choi, A. M., & Alam, J. (1996). Heme oxygenase-1: function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury. Am J Respir Cell Mol Biol, 15(1), 9-19. doi:10.1165/ajrcmb.15.1.8679227
Cohen, F. J., & Lu, Y. (2000). Characterization of hot flashes reported by healthy postmenopausal women receiving raloxifene or placebo during osteoporosis prevention trials. Maturitas, 34(1), 65-73.
Delmas, P. D., Ensrud, K. E., Adachi, J. D., Harper, K. D., Sarkar, S., Gennari, C., . . . Mulitple Outcomes of Raloxifene Evaluation, I. (2002). Efficacy of raloxifene on vertebral fracture risk reduction in postmenopausal women with osteoporosis: four-year results from a randomized clinical trial. J Clin Endocrinol Metab, 87(8), 3609-3617. doi:10.1210/jcem.87.8.8750
Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., . . . Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315-317. doi:10.1080/14653240600855905
Feng, X. (2009). Chemical and Biochemical Basis of Cell-Bone Matrix Interaction in Health and Disease. Curr Chem Biol, 3(2), 189-196. doi:10.2174/187231309788166398
Grady, D., Ettinger, B., Moscarelli, E., Plouffe, L., Jr., Sarkar, S., Ciaccia, A., . . . Multiple Outcomes of Raloxifene Evaluation, I. (2004). Safety and adverse effects associated with raloxifene: multiple outcomes of raloxifene evaluation. Obstet Gynecol, 104(4), 837-844. doi:10.1097/01.AOG.0000137349.79204.b8
Greenspan, S. L., Bone, H. G., Ettinger, M. P., Hanley, D. A., Lindsay, R., Zanchetta, J. R., . . . Treatment of Osteoporosis with Parathyroid Hormone Study, G. (2007). Effect of recombinant human parathyroid hormone (1-84) on vertebral fracture and bone mineral density in postmenopausal women with osteoporosis: a randomized trial. Ann Intern Med, 146(5), 326-339.
Grynpas, M. D., & Marie, P. J. (1990). Effects of low doses of strontium on bone quality and quantity in rats. Bone, 11(5), 313-319.
Guo, C., Wang, S., Duan, J., Jia, N., Zhu, Y., Ding, Y., . . . Wen, A. (2017). Protocatechualdehyde Protects Against Cerebral Ischemia-Reperfusion-Induced Oxidative Injury Via Protein Kinase Cepsilon/Nrf2/HO-1 Pathway. Mol Neurobiol, 54(2), 833-845. doi:10.1007/s12035-016-9690-z
Ha do, T., Oh, J., Khoi, N. M., Dao, T. T., Dung le, V., Do, T. N., . . . Na, M. (2013). In vitro and in vivo hepatoprotective effect of ganodermanontriol against t-BHP-induced oxidative stress. J Ethnopharmacol, 150(3), 875-885. doi:10.1016/j.jep.2013.09.039
Hayes, J. D., & McMahon, M. (2009). NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem Sci, 34(4), 176-188. doi:10.1016/j.tibs.2008.12.008
Horvath, I., MacNee, W., Kelly, F. J., Dekhuijzen, P. N., Phillips, M., Doring, G., . . . Barnes, P. J. (2001). "Haemoxygenase-1 induction and exhaled markers of oxidative stress in lung diseases", summary of the ERS Research Seminar in Budapest, Hungary, September, 1999. Eur Respir J, 18(2), 420-430.
Kim, H., Kim, I. Y., Lee, S. Y., & Jeong, D. (2006). Bimodal actions of reactive oxygen species in the differentiation and bone-resorbing functions of osteoclasts. FEBS Lett, 580(24), 5661-5665. doi:10.1016/j.febslet.2006.09.015
Kim, K., Lee, S. H., Ha Kim, J., Choi, Y., & Kim, N. (2008). NFATc1 induces osteoclast fusion via up-regulation of Atp6v0d2 and the dendritic cell-specific transmembrane protein (DC-STAMP). Mol Endocrinol, 22(1), 176-185. doi:10.1210/me.2007-0237
Kim, M. S., Yang, Y. M., Son, A., Tian, Y. S., Lee, S. I., Kang, S. W., . . . Shin, D. M. (2010). RANKL-mediated reactive oxygen species pathway that induces long lasting Ca2+ oscillations essential for osteoclastogenesis. J Biol Chem, 285(10), 6913-6921. doi:10.1074/jbc.M109.051557
Lee, K., Chung, Y. H., Ahn, H., Kim, H., Rho, J., & Jeong, D. (2016). Selective Regulation of MAPK Signaling Mediates RANKL-dependent Osteoclast Differentiation. Int J Biol Sci, 12(2), 235-245. doi:10.7150/ijbs.13814
Lee, N. K., Choi, Y. G., Baik, J. Y., Han, S. Y., Jeong, D. W., Bae, Y. S., . . . Lee, S. Y. (2005). A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood, 106(3), 852-859. doi:10.1182/blood-2004-09-3662
Lozada, C. J., & Tozman, E. C. (2017). Chapter 120 - Rheumatic Manifestations of Hemoglobinopathies A2 - Firestein, Gary S. In R. C. Budd, S. E. Gabriel, I. B. McInnes, & J. R. O'Dell (Eds.), Kelley and Firestein's Textbook of Rheumatology (Tenth Edition) (pp. 2018-2025): Elsevier.
Manolagas, S. C. (2000). Birth and Death of Bone Cells: Basic Regulatory Mechanisms and Implications for the Pathogenesis and Treatment of Osteoporosis*. Endocrine Reviews, 21(2), 115-137. doi:10.1210/edrv.21.2.0395
Marie, P. J., Ammann, P., Boivin, G., & Rey, C. (2001). Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tissue Int, 69(3), 121-129.
Marie, P. J., Hott, M., Modrowski, D., De Pollak, C., Guillemain, J., Deloffre, P., & Tsouderos, Y. (1993). An uncoupling agent containing strontium prevents bone loss by depressing bone resorption and maintaining bone formation in estrogen-deficient rats. J Bone Miner Res, 8(5), 607-615. doi:10.1002/jbmr.5650080512
Marx, R. E. (2003). Pamidronate (Aredia) and zoledronate (Zometa) induced avascular necrosis of the jaws: a growing epidemic. J Oral Maxillofac Surg, 61(9), 1115-1117.
McMahon, M., Itoh, K., Yamamoto, M., & Hayes, J. D. (2003). Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. J Biol Chem, 278(24), 21592-21600. doi:10.1074/jbc.M300931200
Miyamoto, I., Liu, J., Shimizu, K., Sato, M., Kukita, A., Kukita, T., & Kondo, R. (2009). Regulation of osteoclastogenesis by ganoderic acid DM isolated from Ganoderma lucidum. Eur J Pharmacol, 602(1), 1-7. doi:10.1016/j.ejphar.2008.11.005
Otterbein, L. E., Bach, F. H., Alam, J., Soares, M., Tao Lu, H., Wysk, M., . . . Choi, A. M. (2000). Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med, 6(4), 422-428. doi:10.1038/74680
Pacifici, R. (1996). Estrogen, cytokines, and pathogenesis of postmenopausal osteoporosis. J Bone Miner Res, 11(8), 1043-1051. doi:10.1002/jbmr.5650110802
Park, B. K., Zhang, H., Zeng, Q., Dai, J., Keller, E. T., Giordano, T., . . . Wang, C. Y. (2007). NF-kappaB in breast cancer cells promotes osteolytic bone metastasis by inducing osteoclastogenesis via GM-CSF. Nat Med, 13(1), 62-69. doi:10.1038/nm1519
Rahman, M. M., Bhattacharya, A., & Fernandes, G. (2008). Docosahexaenoic acid is more potent inhibitor of osteoclast differentiation in RAW 264.7 cells than eicosapentaenoic acid. J Cell Physiol, 214(1), 201-209. doi:10.1002/jcp.21188
Rossouw, J. E., Anderson, G. L., Prentice, R. L., LaCroix, A. Z., Kooperberg, C., Stefanick, M. L., . . . Writing Group for the Women's Health Initiative, I. (2002). Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women's Health Initiative randomized controlled trial. JAMA, 288(3), 321-333.
Ryter, S. W., & Choi, A. M. (2009). Heme oxygenase-1/carbon monoxide: from metabolism to molecular therapy. Am J Respir Cell Mol Biol, 41(3), 251-260. doi:10.1165/rcmb.2009-0170TR
Saag, K. G., Shane, E., Boonen, S., Marin, F., Donley, D. W., Taylor, K. A., . . . Marcus, R. (2007). Teriparatide or alendronate in glucocorticoid-induced osteoporosis. N Engl J Med, 357(20), 2028-2039. doi:10.1056/NEJMoa071408
Sarady-Andrews, J. K., Liu, F., Gallo, D., Nakao, A., Overhaus, M., Ollinger, R., . . . Otterbein, L. E. (2005). Biliverdin administration protects against endotoxin-induced acute lung injury in rats. Am J Physiol Lung Cell Mol Physiol, 289(6), L1131-1137. doi:10.1152/ajplung.00458.2004
Seeman, E. (2003). Invited Review: Pathogenesis of osteoporosis. J Appl Physiol (1985), 95(5), 2142-2151. doi:10.1152/japplphysiol.00564.2003
Takatsuna, H., Asagiri, M., Kubota, T., Oka, K., Osada, T., Sugiyama, C., . . . Umezawa, K. (2005). Inhibition of RANKL-induced osteoclastogenesis by (-)-DHMEQ, a novel NF-kappaB inhibitor, through downregulation of NFATc1. J Bone Miner Res, 20(4), 653-662. doi:10.1359/JBMR.041213
Takayanagi, H. (2005). Mechanistic insight into osteoclast differentiation in osteoimmunology. J Mol Med (Berl), 83(3), 170-179. doi:10.1007/s00109-004-0612-6
Takayanagi, H. (2007). The role of NFAT in osteoclast formation. Ann N Y Acad Sci, 1116, 227-237. doi:10.1196/annals.1402.071
Tan, W. C., Kuppusamy, U. R., Phan, C. W., Tan, Y. S., Raman, J., Anuar, A. M., & Sabaratnam, V. (2015). Ganoderma neo-japonicum Imazeki revisited: Domestication study and antioxidant properties of its basidiocarps and mycelia. Sci Rep, 5, 12515. doi:10.1038/srep12515
Wang, Y., Huo, Y., Zhao, L., Lu, F., Wang, O., Yang, X., . . . Zhou, F. (2016). Cyanidin-3-glucoside and its phenolic acid metabolites attenuate visible light-induced retinal degeneration in vivo via activation of Nrf2/HO-1 pathway and NF-kappaB suppression. Mol Nutr Food Res, 60(7), 1564-1577. doi:10.1002/mnfr.201501048
Winslow, M. M., Pan, M., Starbuck, M., Gallo, E. M., Deng, L., Karsenty, G., & Crabtree, G. R. (2006). Calcineurin/NFAT signaling in osteoblasts regulates bone mass. Dev Cell, 10(6), 771-782. doi:10.1016/j.devcel.2006.04.006
Zhao, R. (2012). Immune regulation of osteoclast function in postmenopausal osteoporosis: a critical interdisciplinary perspective. Int J Med Sci, 9(9), 825-832. doi:10.7150/ijms.5180
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code