Responsive image
博碩士論文 etd-0525113-011415 詳細資訊
Title page for etd-0525113-011415
論文名稱
Title
添加芳香族丙烯酸甲酯於具光聚合能力之二氧化矽用於光學儲存之合成及光學性質之量測
Synthesis and Optical Properties of Photopolymerizable Silica with Aromatic Methacrylate for Optical Storage
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
70
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-19
繳交日期
Date of Submission
2013-06-26
關鍵字
Keywords
溶膠-凝膠法、丙烯酸甲酯、繞射效率、光學儲存、二氧化矽
Optical storage, Silica, Methacrylate, Sol-gel, Diffraction efficiency
統計
Statistics
本論文已被瀏覽 5666 次,被下載 428
The thesis/dissertation has been browsed 5666 times, has been downloaded 428 times.
中文摘要
本研究利用溶膠-凝膠法,製備應用在光學儲存的有機無機複合材料。在甲基丙烯酸丙酯三甲氧基矽烷(MPTS)與四乙氧基矽烷(TEOS)做為前驅物的系統內,添加甲基丙烯酸苯基酯(BMA),可以填補MPTS的單體在縮合反應後被TEOS隔開的情形,使光聚合時光柵結構能成長完整。本研究在添加BMA後,繞射效率可提昇至約50%。
為了放大SiO2孔洞結構並探討對於繞射效率的影響,本研究亦添加了素有”矽橡膠”之稱的聚二甲基矽氧烷(PDMS),其兩端的氫氧基可參與縮和反應。結果顯示添加PDMS者,其最高繞射效率及衰退速率上的表現均次於未添加者。推斷可能原因為PDMS參與縮合反應,單體間的距離增大使光柵無法完整成長,導致繞射能力下降。而繞射效率衰退的原因則與藍光持續寫入以及PDMS的添加有關。
Abstract
Optical storage materials based on a photopolymerizable silica and a benzyl methacrylate (BMA) were prepared by sol-gel process and their optical properties were measured in this study. The silica precursors used were 3-(trimethoxysilyl) propyl methacrylate (MPTS), polydimethylsiloxane (PDMS), and tetraethyl- orthosilicate (TEOS). BMA was expected to fill the empty space between MPTS clusters to increase the degree of free radical polymerization, so as to increase the optical density of the materials system. In our system, the diffraction efficiency can reach as high as 50 %. On the other hand, PDMS was designed to enlarge the pore structure of silica, allowing the polymerizable BMA and MPTS to efficiently fill the pores before irradiation. The result shows the diffraction efficiency decreases and decays quickly by the addition of PDMS. The decrease of diffraction efficiency is attributed to the co-condensation of PDMS with MPTS and TEOS, where the concentration of double bonds in MPTS is reduced, thus inhibiting the complete growth of the grating during photopolymerization. The decay of diffraction efficiency is attributed to the prolonged irradiation of blue laser at 473 nm on the PDMS-containing optical storage materials.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
圖目錄 viii
表目錄 x
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
第二章 理論基礎與文獻回顧 3
2.1 全像術簡介 3
2.2 全像感光儲存材料的種類 3
2.3 感光高分子的種類 5
2.4 光聚合 6
2.4.1 光聚合反應 6
2.4.2 抑制劑的效應 7
2.4.3 光柵形成原理 8
2.4.4 穩定光柵 8
2.5 製備有機-無機複合材料之種類及優缺 10
2.6 溶膠-凝膠法 11
2.6.1 溶膠-凝膠法之發展及簡介 11
2.6.2 溶膠-凝膠法之優缺 11
2.6.3 影響溶膠-凝膠法之因素 12
2.7 繞射效率之計算方法及種類 16
2.8 光學系統之架構 17
第三章 實驗 19
3.1 實驗藥品 19
3.2 實驗儀器 19
3.3 實驗流程 21
第四章 結果 24
4.1 抑制劑的移除 24
4.2 添加PDMS 24
4.3 藍光入射角角度 26
4.4 BMA的效應 28
4.5 傅利葉轉換紅外線光譜儀(FTIR)分析 29
4.6 光學顯微鏡(OM)觀察 33
4.7 掃描式電子顯微鏡(SEM)觀察 37
4.8 比表面積分析儀(BET) 40
4.9 高階繞射效率之量測 44
4.10 不同藍光寫入時間繞射效率之變化 44
第五章 討論 47
5.1 抑制劑的影響 47
5.2 BMA的效應 47
5.3 藍光入射角度的影響 47
5.4 孔洞性質 48
5.5 PDMS的效應 48
5.6 繞射效率衰減原因之探討 51
第六章 結論 54
第七章 建議未來工作 55
7.1 繞射效率的提昇 55
7.2 試片厚度上的控制 55
7.3 孔洞性質的探討 55
7.4 繞射效率衰退之解釋 55
參考文獻 56
參考文獻 References
[1] F.K. Bruder, R. Hagen, T. Rölle, M.S. Weiser, T. Fäcke, Angew. Chem. Int. Ed., 50 (2011) 4552-4573.
[2] S. M Teng. "Synthesis, and Diffraction Efficiency of Photopolymerizable Silica for Optical Storage", master thesis, National Sun Yat-sen University, Taiwan., (2012).
[3] D. Gabor, Nat., 161 (1948) 777-778.
[4] P.J. Heerden, Appl. Opt., 2 (1963) 393-400.
[5] E.K. Company, Technical Information Data Sheet, (2000).
[6] W.R. Graver, J.W. Gladden, J.W. Eastes, Appl. Opt., 19 (1980) 1529-1536.
[7] R.R.A. Syms, Practical volume holography, Clarendon Press Oxford, 1990.
[8] B. Chang, Opt. Eng., 19 (1980) 195642
[9] R. Curran, T. Shankoff, Appl. Opt., 9 (1970) 1651-1657.
[10] J.O. White, M. Cronin‐Golomb, B. Fischer, A. Yariv, Appl. Phys. Lett., 40 (1982) 450-452.
[11] W. Colburn, K. Haines, Appl. Opt., 10 (1971) 1636-1641.
[12] P. Hariharan, Basics of holography, Cambridge University Press, 2002.
[13] P. Cheben, M. Calvo, Appl. Phys. Lett., 78 (2001) 1490-1492.
[14] M. Feuillade, C. Croutxé-Barghorn, L. Mager, C. Carré, A. Fort, Chem. Phys. Lett., 398 (2004) 151-156.
[15] L. Carretero, A. Murciano, S. Blaya, M. Ulibarrena, A. Fimia, Opt. Express, 12 (2004) 1780-1787.
[16] N. Böhm, A. Materny, H. Steins, M. Müller, G. Schottner, Macromolecules, 31 (1998) 4265-4271.
[17] O. Kulikovska, L.M. Goldenberg, L. Kulikovsky, J. Stumpe, Chem. Mater., 20 (2008) 3528-3534.
[18] W. Que, X. Yao, W. Liu, Appl. Phys. B, 91 (2008) 539-543.
[19] M. Serwadczak, S. Kucharski, J. Sol-Gel Sci. Technol., 37 (2006) 57-62.
[20] N. Böhm, A. Materny, W. Kiefer, H. Steins, M. Müller, G. Schottner, Macromolecules, 29 (1996) 2599-2604.
[21] R.J. Young, P.A. Lovell, Introduction to polymers, CRC, 2009.
[22] M.R. Gleeson, J.T. Sheridan, J. Opt. Soc. Am. B, 26 (2009) 1736-1745.
[23] S. Liu, M. Gleeson, J. Guo, J. Sheridan, Appl. Phys. B: Lasers and Optics, 100 (2010) 559-569.
[24] E. Kim, J. Park, C. Shin, N. Kim, Nanotechnology, 17 (2006) 2899.
[25] C.Y. Kuo, T.C. Hsu, W.H. Su, J. Non-Cryst. Solids, (2011).
[26] B.M. Novak, C. Davies, Macromolecules, 24 (1991) 5481-5483.
[27] C.J.T. Landry, B.K. Coltrain, J.A. Wesson, N. Zumbulyadis, J.L. Lippert, Polymer, 33 (1992) 1496-1506.
[28] B. Wang, G. Wilkes, J. Hedrick, S. Liptak, J. McGrath, Macromolecules, 24 (1991) 3449-3450.
[29] C.C. Sun, J. Mark, Polymer, 30 (1989) 104-106.
[30] J.E. Mark, C.Y. Jiang, M.Y. Tang, Macromolecules, 17 (1984) 2613-2616.
[31] H. Schmidt, J. Non-Cryst. Solids, 73 (1985) 681-691.
[32] A. M. Ebelmen, Chim. Phys., 57 (1846).
[33] W. Geffcken, E. Berger, in, May, 1939.
[34] T. Saegusa, Y. Chujo, J. Macromol. Sci., chem., 27 (1990) 1603-1612.
[35] K. Haraguchi, Y. Usami, Y. Ono, J. Mater. Sci., 33 (1998) 3337-3344.
[36] S. Jeong, J. Moon, J. Non-Cryst. Solids, 351 (2005) 3530-3535.
[37] H. Jiang, X.C. Yuan, Y. Zhou, Y. Chan, Y. Lam, Opt. Commun., 185 (2000) 19-24.
[38] Ó. Martínez-Matos, M.L. Calvo, J.A. Rodrigo, P. Cheben, F. Del Monte, Appl. Phys. Lett., 91 (2007) 141115-141115-141113.
[39] W. Que, X. Yao, W. Liu, Appl. Phys. B: Lasers and Optics, 91 (2008) 539-543.
[40] W. Liao, J. Qu, Z. Li, H. Chen, Chin. J. Chem. Eng., 18 (2010) 156-163.
[41] R. Winter, J.B. Chan, R. Frattini, J. Jonas, J. Non-Cryst. Solids, 105 (1988) 214-222.
[42] C.J. Brinker, G.W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing, Academic Pr, 1990.
[43] R.K. Iler, The chemistry of silica: solubility, polymerization, colloid and surface properties, and biochemistry, Wiley New York, 1979.
[44] C. Y Kuo. "Fabrication of volume holograms using sol-gel technology and its application to 3D profile measurement", doctorate dissertation, National Sun Yat-sen University, Taiwan., (2012).
[45] S. Costacurta, L. Malfatti, P. Falcaro, P. Innocenzi, J. Sol-Gel Sci. Technol., 44 (2007) 59-64.
[46] R. Pierotti, J. Rouquerol, Pure & Appl. Chem., (1985).
[47] D.J. Kang, J.K. Kim, B.S. Bae, Opt. Express, 11 (2004) 3947-3953.
[48] S. Blaya, A. Murciano, P. Acebal, L. Carretero, M. Ulibarrena, A. Fimia, Appl. Phys. Lett., 84 (2004) 4765-4767.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code