Responsive image
博碩士論文 etd-0525113-115140 詳細資訊
Title page for etd-0525113-115140
論文名稱
Title
二氧化矽披覆電漿奈米粒子場增益拉曼散射之研究
A study of field enhanced Raman scattering by plasmonic nanoparticles with SiO2 coating
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
160
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-07
繳交日期
Date of Submission
2013-08-24
關鍵字
Keywords
拉曼散射、光柵、繞射、奈米粒子、表面電漿
nanoparticle, grating, surface plasmon, Raman scattering, diffraction
統計
Statistics
本論文已被瀏覽 5669 次,被下載 150
The thesis/dissertation has been browsed 5669 times, has been downloaded 150 times.
中文摘要
金屬奈米粒子由於其表面電漿效應,可被應用於製作具有特殊的光電效應的元件,因而在各領域中被廣泛地研究。隨著各種有趣的現象與應用被逐一發展出來,金屬奈米粒子的重要性與日俱增,成為各個潛在研究中不可或缺的元素。本論文係以應用金屬奈米粒子於表面增益拉曼散射為主題,研究表面增益拉曼散射的增益機制,及其與金屬奈米粒子表面電漿效應的關係。除此之外,本論文亦藉由觀測繞射光強度的變化,來研究金屬奈米粒子在退火過程中,邊界效應對金屬奈米粒子形狀的影響。因此,本論文的研究可分成二部分來說明:
第一,觀測結晶紫分子於二氧化矽披覆銀奈米粒子的表面,其表面增益拉曼訊號強度,隨二氧化矽層厚度的變化而改變的現象。本實驗係藉由在銀奈米粒子表面上,沉積上梯度厚度的二氧化矽,來研究此增益機制。值得注意的事是梯度二氧化矽層的功用。因在同一片銀奈米粒子樣品上,即可量測不同厚度的二氧化對銀奈米粒子的影響,不需更換銀奈米粒子的樣品,所以可增加實驗的準確性。此外,二氧化矽亦可做為表面保護層,保護銀奈米粒子的活性,使得銀奈米粒子可作為重覆使用的基板。
第二,本研究利用黃光製程製作銀奈米粒的光柵。藉由觀測金奈米粒子光柵的繞射光的強度變化,來研究金奈米粒子在光柵中的形狀效應。在金奈米粒子的SEM影像中,我們發現金奈米粒子的形狀呈現橢圓形狀,且其平均長軸以57.8度的角度,略微垂直於光柵方向。這個形狀效應除了造成金奈米粒子的表面電漿共振波長,隨著入射光的偏振方向變化而位移外, 亦使得光柵的繞射光呈現偏振依賴性。在這實驗中,我們將探討這個金奈米粒子光柵的繞射特性,來了解光柵中金奈米粒子的形狀,受到光柵條邊界效應的影響。
Abstract
Metallic nanoparticles due to surface plasmon effects are used to fabricate devices with particular electro-optic properties, so that, they have been widely studied in many fields. With progressive developments of interesting phenomena and applications, metallic nanoparticles have become an important role in different kinds of the studies. One interesting application is the surface enhanced Raman scattering associated with metallic nanoparticles. It is worthy to investigate the relationship between the surface plasmon effects of metallic nanoparticles and the enhancement mechanism of the Raman scattering. Besides, the shape effects of metallic nanoparticles in an array are interesting for a combination with optical circuits. On the basis of these properties of metallic nanoparticles, two studies will be introduced in this dissertation:
First, the intensity of surface-enhanced Raman scattering (SERS) light of crystal violet (CV) molecules are probed as the molecules adsorbs on silver nanoparticles with SiO2 coating. We find that the intensity of the SERS light from CV molecules varies with the thickness of the SiO2 coating. Hence, this experiment investigates the enhancement mechanism of surface enhanced Raman scattering by modulating the thickness of the SiO2 coating. In addition, the SiO2 coating can work as a preventer to remain the activity of the silver nanoparticles. This makes the silver nanoparticles with SiO2 coating as a reusable substrate, which can provide a possibility to increase the precession of SERS measurements.
Second, a gold nanoparticle grating is fabricated by lithographic method. The shape effect of gold nanoparticles in the grating is investigated by probing the diffraction light intensity of the array. A variation of the diffraction light intensity of the grating is revealed as rotating the polarization of the probe light. And, the peak of the diffraction spectra shifts with the increasing of the polarization angle of the probe light. Under observation of the SEM, gold nanoparticles of an ellipsoid-like shape are shown and the major axis of gold nanoparticles are parallel a direction with an averaged angle of 57.8o respect to grating direction. We thus considerably thought that this the varying of the diffraction spectra are attributed to the shifts of localized surface plasmon resonance. In addition, the boundary effect on the shape of gold nanoparticles in the grating is explored.
目次 Table of Contents
論文審定書 I
誌謝 II
摘要 III
Abstract V
目錄 VII
圖 次 XI
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 文章架構 3
第二章 文獻回顧 3
2.1 金屬奈米粒子的表面電漿共振 9
2.1.1 金屬奈米粒子的光學性質 10
2.1.2 金屬奈米粒子的幾何形狀效應 11
2.1.3 金屬奈米粒的環境折射率效應 14
2.2 金屬奈米粒子的製備 17
2.3 金屬奈米粒子於表面增益拉曼散射的應用與發展 28
第三章 基本理論 42
3.1 拉曼散射 42
3.1.1 拉曼散射簡史 43
3.1.2 拉曼散射理論與分子振盪能階 44
3.1.2.1 拉曼散射的古典理論 47
3.1.2.2 拉曼散射的能態 51
3.1.3拉曼散射光譜與紅外線光譜 56
3.2金屬奈米粒子的表面電漿 60
3.2.1 金屬奈米粒子的介電係數函數 61
3.2.2 金屬奈米粒子於穩定電場的電位及電場 70
3.2.3 金屬奈米粒子於時變電場的電位及電場 74
3.2.5 金屬奈米粒子的光吸收及散射 79
3.3 表面增益拉曼散射 81
3.3.1 電磁增益機制 82
3.3.2 化學增益機制 84
3.3.3 表面增益拉曼散射之增益因子 87
第四章 二氧化矽披覆電漿奈米粒子場增益拉曼散射 90
4.1 實驗方法 90
4.1.1樣品製備 90
4.1.2樣品的特性分析 94
4.1.3 實驗量測裝置 96
4.2實驗結果與討論 97
4.2.1表面增益拉曼散射光譜 97
4.2.2 二氧化矽層的調制機制 100
4.2.3 表面增益拉曼散射機制的探討 101
4.2.4 基板的重覆使用性 102
第五章 金奈米粒子的形狀效應及其光柵繞射的偏振相依性 105
5.1 實驗方法 105
5.1.1樣品製備 105
5.1.2樣品的特性分析 107
5.1.3 實驗量測裝置 109
5.2實驗結果與討論 110
5.2.1金奈米粒子光柵繞射光譜圖 110
5.2.2 金奈米粒子的表面電漿共振 112
5.3 Echelon光柵 113
第六章 總結 116
(a) 二氧化矽披覆電漿奈米粒子場增益拉曼散射 116
(b) 金奈米粒子的形狀效應及其光柵繞射的偏振相依性 117
附錄 118
附錄A米氏理論 (Mie’s theory) 118
附錄B光柵繞射理論(Raman-Nath diffraction) 124
參考文獻 128
著作: 138
參考文獻 References
1. S. J. Oldenburg, G. D. Hale, J. B. Jackson, and N. J. Halas, Appl. Phys. Let. 75, 1063 (1999).
2. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, J. Chem. Phys. 116, 6755 (2002).
3. Juris Prikulis, Fredrik Svedberg, and Mikael Kӓll, Go¨teborg, Sweden Jonas Enger, Kerstin Ramser, Mattias Goksӧr, and Dag Hanstorp, Nano Lett. 4, 115 (2004).
4. A. Kramer, W. Trabesinger, B. Hecht, and U. P. Wild, Appl. Phys. Lett. 80, 1652 (2002).
5. David Richards, Phil. Trans. R. Soc. Lond. A 361, 2843 (2003).
6. Sergei Ku¨hn, Ulf Ha°kanson, Lavinia Rogobete, and Vahid Sandoghdar, Phys. Rev. Lett. 97, 017402 (2006).
7. Wolfgang Fritzsche and T Andrew Taton, Nanotechnology 14, R6 (2003).
8. Eugenii Katz and Itamar Willner, Angew. Chem. Int. Ed. 43, 6042 (2004).
9. Susie Eustis and Mostafa A. El-Sayed, Chem. Soc. Rev. 35, 209 (2006).
10. R. A. Álvarez-Puebla and L. M. Liz-Marzán, Energy Environ. Sci. 3, 1011 (2010).
11. Wei Xie and Sebastian Schlu¨cker, Phys.Chem. Chem. Phys. 15, 5329 (2013).
12. Leilei Kang, Ping Xu, Bin Zhang, Hsinhan Tsai, Xijiang Han and Hsing-Lin Wang, Chem. Commun. 49, 3389 (2013).
13. G. Mie, Ann. Phy. 25, 377 (1908).
14. P. Debye, Ann. Phys. 30. 57 (1909).
15. H. C. Van de Hulst, “Light Scattering by Small Particle”, Wiley, New York (1957).
16. Willam T. Doyle, “Electrodynamic resoponse of metal spheres”, J. Opt. Soc. Am. A 2, 1031 (1985).
17. U. Kreibig, M.Vollmer, “Optical Properties of Metal Cluster”, Springer-Verlag, Berlin, New York (1995).
18. Bohren, C. F. and Huffman, D. R., “Absorption and Scattering of Light by Small Particles”, John Wiley & Sons: New York (1983).
19. Chris Oubre and Peter Nordlander, J. Phys. Chem. B 108, 17740 (2004).
20. Dennis M. Sullivan, “Electromagnetic Simulation Using the FDTD Method”, Wiley-IEEE Press ( 2000).
21. John T. Krug II, Erik J. Sa´nchez, and X. Sunney Xie, J. Chem. Phys. 116, 10895 (2002).
22. George C. Schatz, Matthew A. Young, and Richard P. Van Duyne, “Surface-Enhanced Raman Scattering: Physics and Applications”, Springer (2006).
23. Molly M. Miller and Anne A. Lazarides, J. Phys. Chem. B 109, 21556(2005).
24. K. Lance Kelly, Eduardo Coronado, Lin Lin Zhao, and George C. Schatz, J. Phys. Chem. B 107, 668 (2003).
25. Maxim A. Yurkin, David de Kanter, and Alfons G. Hoekstra, J. Nanophotonics, 4, 041585 (2010).
26. Stefan A. Maiera and Harry A. Atwater, J. Appl. Phys. 98, 011101 (2005).
27. T. Z ¨Uchner, A. V. Failla, A. Hartschuh, And A. J. Meixner, J. Microscopy 229, 337 (2008).
28. Traci R. Jensen, Michelle Duval Malinsky, Christy L. Haynes, and Richard P. Van Duyne, J. Phys. Chem. B 104, 10549 (2000).
29. Rongchao Jin, Y. Charles Cao, Encai Hao, Gabriella S. Me´ traux, George C. Schatz, and Chad A. Mirkin, Nature 425, 487 (2003).
30. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, Phys. Rev. Lett. 84, 4721 (2000).
31. Jean Cesario, Romain Quidant and Gonçal Badenes, and Stefan Enoch, Opt. Lett. 30, 3404 (2005).
32. Prashant K. Jain and Mostafa A. El-Sayed, Nano Lett. 8, 4347 (2008).
33. Alan Campion and Patanjali Kambhampati, Chem. Soc. Rev. 27, 241 (1998).
34. Meikun Fana, Gustavo F.S. Andradec, Alexandre G. Brolod, Analytica Chimica Acta 693, 7 (2011).
35. Stefan A. Maier, IEEE J. Selected Topics: In Quantum Electronics 12, 1214 (2006).
36. M. G. Albrecht and J. A. Creighton, J. Am. Chem. Soc. 99, 5215 (1977).
37. D. L. Jeanmaire and R. P. Van Duyne, J. Electroanal. Chem. 84, 1 (1977).
38. Joel Gersten and Abraham Nitzan, J. Chem. Phys. 73, 3023 (1980).
39. Frank J. Adrian, J. Chem. Phys. 77, 5302 (1982).
40. Won-Hwa Park and Zee Hwan Kim, Nano Lett. 10, 4040 (2010).
41. Bhavya Sharma, Renee R. Frontiera, Anne-Isabelle Henry, Emilie Ringe, and Richard P. Van Duyne, materialstody 15, 16 (2012).
42. M. Moskovits, J. Chem. Phys. 69, 4159 (1978).
43. Zhong-Qun Tian, Zhi-Lin Yang, Bin Ren, and De-Yin Wu, “Surface-Enhanced Raman Scattering: Physics and Applications”, Springer (2006).
44. Shuming Nie and Steven R. Emory, Science 275, 1102 (1997).
45. William E. Doering and Shuming Nie, J. Phys. Chem. B 106, 311 (2002).
46. Katrin Kneipp, Yang Wang, Harald Kneipp, Lev T. Perelman, Irving Itzkan, Ramachandra R. Dasari, and Michael S. Feld, Phys. Rev. Lett. 78, 1667 (1997).
47. Adam D. McFarland and Richard P. Van Duyne, Nano let. 3, 1057 (2003).
48. M. Faraday, Phil. Trans. R. Soc. Lond. 1 January 1 Phil. Trans. R. Soc. Lond. 147, 1451 (1857).
49. W. Andrew Murray and William L. Barnes, Adv. Mater. 19, 3771 (2007).
50. Petra Krystek, Andrea Ulrich, Carmen Cecilia Garcia, Srirang Manohar, and Rob Ritsema, J. Anal. At. Spectrom. 26, 1701 (2011).
51. Encai Hao and George C. Schatz, J. Chem. Phys. 120, 357(2004).
52. Sylvia Underwood and Paul Mulvaney, Langmuir, 10, 3427 (1994).
53. Jack J. Mock, David R. Smith, and Sheldon Schultz, Nano let. 3, 485 (2003).
54. Alyson V. Whitney, Jeffrey W. Elam, Shengli Zou, Alex V. Zinovev, Peter C. Stair, George C. Schatz, and Richard P. Van Duyne, J. Phys. Chem. B 109, 20522 (2005).
55. Sally D. Solomon, Mozghan Bahadory, Aravindam V. Jeyarajasingam, Susan A. Rutkowsky, Charles Boritz, and Lorraine Mulfinger, J. Chem. Educ. 84,322 (2007).
56. Sumio Iijima and Toshinari Ichihashi, Phys. Rev. Lett. 56, 616 (1986).
57. Kenji Koga, Tamio Ikeshoji, and Ko-ichi Sugawara, Phys. Rev. Lett. 92, 115507-1 (2004).
58. Rongchao Jin, YunWei Cao, Chad A. Mirkin, K. L. Kelly, George C. Schatz, J. G. Zheng, Science 294, 1901 (2001).
59. Chin-Ming Tsai, Ming-Sheng Hsu, Jui-Chang Chen, and Cheng-Liang Huang,J. Phys. Chem. C 116, 461 (2012).
60. Wen-Chi Hung, “A study of surface plasmon effect excited on metal nanoparticle”, Scholar graduation thesis (2008).
61. Eshwar Thouti, Nikhil Chander, Viresh Dutta and Vamsi K Komarala, J. Opt. 15, 035005 (2013).
62. A. Curry, G. Nusz, A. Chilkoti, and A. Wax, Opt. Express 13, 2668 (2005).
63. A. Hilgera, N. C¨uppers, M. Tenfelde, and U. Kreibig, Eur. Phys. J. D 10, 115{118 (2000).
64. Susumu Inasawa, Masakazu Sugiyama, and Yukio Yamaguchi, J. Phys. Chem. B 109, 3104 (2005).
65. Wen-Chi Hung, Wood-Hi Cheng, Ming-Shan Tsai, Wei-Chih Chung, I-Min Jiang, and Pochi Yeh,Appl. Phys. Lett. 93, 061109 (2008).
66. T. D. Corrigan, S.-H. Guo, H. Szmacinski, and R. J. Phaneuf, Appl. Phys. Lett. 88, 101112 (2006).
67. Paula M. Mendes, Susanne Jacke, Kevin Critchley, Jose Plaza, Yu Chen, Kirill Nikitin, Richard E. Palmer, Jon A. Preece, Stephen D. Evans, and Donald Fitzmaurice, Langmuir 20, 3766 (2004).
68. Anuj Dhawan, Michael Gerhold, Andrew Madison, Jason Fowlkes, Phillip E. Russell, Tuan Vo-Dinh, and Donovan N. Leonard, Scanning 31, 4 (2009).
69. Traci R. Jensen , George C. Schatz , and Richard P. Van Duyne, J. Phys. Chem. B 103 2394 (1999).
70. Jon A. Dieringer, Adam D. McFarland, Nilam C. Shah, Douglas A. Stuart, Alyson V. Whitney, Chanda R. Yonzon, Matthew A. Young, Xiaoyu Zhang and
Richard P. Van Duyne, Faraday Discuss. 132, 9 (2006).
71. Martin Moskovits, J. Raman Spectrosc. 36, 485 (2005).
72. Xiaotian Wang, Wensheng Shi, Guangwei She, and Lixuan Mu, J. Am. Chem. Soc. 133, 16518 (2011).
73. Manuel R. Gonc¸alves, Fabian Enderle, and OthmarMarti, Journal of Nanotechnology 2012 (2012).
74. Kristen D. Alexander, Shunping Zhang, Angela R. HightWalker, Hongxing Xu, and Rene Lopez, Journal of Nanotechnology 2012 (2012).
75. Xian Zhang, Qin Zhou, Yu Huang, Zhengcao Li, and Zhengjun Zhang, International Journal of Spectroscopy 2012 (2012).
76. Milton Kerker, Dau-Sing Wang, and H. Chew, Appl. Opt. 19, 4159 (1980).
77. L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Ka¨ ll, Appl. Phys. Lett. 78, 802 (2001).
78. Yu Lu, Gang L. Liu, and Luke P. Lee, Nano lett. 5, 5 (2005).
79. Jon P. Camden, Jon A. Dieringer, Yingmin Wang, David J. Masiello, Lawrence D. Marks, George C. Schatz, and Richard P. Van Duyne, J. AM. CHEM. SOC. 130, 12616 (2008).
80. N. Fe´lidj, J. Aubard, and G. Le´ vi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, Appl. Phys. Lett., 82, 3095 (2003).
81. Tuan Vo-Dinh, Leonardo R. Allain and David L. Stokes, J. Raman Spectrosc. 33, 511 (2002).
82. Ximei Qian, Xiang-Hong Peng, Dominic O Ansari, Qiqin Yin-Goen, Georgia Z Chen, Dong M Shin, Lily Yang, Andrew N Young, May D Wang and Shuming Nie, Nature Biotech. 26, 83 (2008).
83. Lingbo Kong, Pengfei Zhang, Jing Yu, Peter Setlow, and Yong-qing Li, Appl. Phys. Lett. 98, 213703 (2011)
84. John R. Ferraro, Kazuo Nakamoto and Chris W. Brown, “Introductory Raman Spectroscopy”, 2nd edition, Academic Press (2002).
85. Derek A. Long, “The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules”, Wiley (2001).
86. John David Jackson, “Classical Electrodynamics”, 3rd edition, Wiley (1998).
87. Eugen Merzbacher, “Quantum Mechanics”, 3rd edition, Wiley (1997).
88. Oleg Varnavski, Guda Ramakrishna, Junhyung Kim, Dongil Lee, and heodore Goodson, J. Am. Chem. Soc. 132, 16 (2010).
89. Arisato Kawabata and Ryogo Kubo, J. Phys. Soc. Jap. 21, 1765(1966).
90. Eugene Hecht, “Optics”, 4th edition, Addison-Wesley (2001).
91. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370.
92. U Kreibig, J. Phys. F: Metal Phys. 4, 999 (1974).
93. Luc´ıa B Scaffardi and Jorge O Tocho, Nanotechnology 17, 1309 (2006).
94. William T. Doyle, J. Opt. Soc. Am. A 2, 1031(1985).
95. P. Royer, J. P. Goudonnet, R. J. Warmack, and T. L. Ferrell, Phys. Rev. B 35, 3753-3759 (1987).
96. B. K. Russell, J. G. Mantovani, V. E. Anderson, R. J. Warmack, and T. L. Ferrell, Phys. Rev. B 35, 2151 (2151).
97. Noshir S. Pesika, Kathleen J. Stebe, and Peter C. Searson, Adv. Mater. 15, 1289 (2003).
98. Ricardo Aroca, “Surface-Enhanced Vibrational Spectroscopy”, Wiley (2006).
99. M. Fleischmann, P.J. Hendra, and A.J. McQuillan, Chem. Phys. Lett. 26, 163 (1974).
100. Lianming Tong,w Tao Zhu and Zhongfan Liu, Chem. Soc. Rev. 40, 1296 (2011).
101. Encai Hao and George C. Schatz, J. Chem. Phys. 120, 357 (2004).
102. Jaysen Nelayah, Mathieu Kociak, Odile St´ Ephan, F. Javier Garc´Ia De Abajo, Marcel Tenc´E, Luc Henrard, Dario Taverna, Isabel Pastoriza-Santos, Luis M. Liz-Marza´N, and Christian Colliex, nature phys. 3, 348 (2007).
103. Alan Campion, J. E. Ivanecky 111, C. M. Child, and Michelle Foster, J. Am. Chem. SOC. 117, 11807 (1995).
104. David P. Fromm, Arvind Sundaramurthy, Anika Kinkhabwala, P. James Schuck, Gordon S. Kino, and W. E. Moerner, J. Chem. Phys. 124, 061101 (2006).
105. Nam-Jung Kim, J. Phys. Chem. C114, 13979 (2010).
106. Francisco Avila, David J. Fernandez, Juan F. Arenas, Juan C. Otero and Juan Soto, Chem. Commun. 47, 4210 (2011).
107. Won-Hwa Park, and Zee Hwan Kim, Nano Lett. 10, 4040 (2010).
108. Masatoshi Osawa, Naoki Matsuda; Katsumasa Yoshii, and Isamu Uchida, J. Phys. Chem. 98, 12702 (1994).
109. Xiaotian Wang, Wensheng Shi, Guangwei She, and Lixuan Mu, J. Am. Chem. Soc. 133, 16518 (2011).
110. Libin Yang, Xin Jiang, Weidong Ruan, Bing Zhao, Weiqing Xu, and John R. Lombardi, J. Phys. Chem. C 112, 20095 (2008).
111. Amy M. Michaels, Jiang Jiang, and Louis Brus, J. Phys. Chem. B 104, 11965 (2000).
112. Samuel L. Kleinman, Renee R. Frontiera, Anne-Isabelle Henry, Jon A. Dieringer, and Richard P. Van Duyne, Phys. Chem. Phys. 15, 21 (2013).
113. Tamitake Itoh, Kenichi Yoshida, Vasudevanpillai Biju, Yasuo Kikkawa, Mitsuru Ishikawa, and Yukihiro Ozaki, Phys. Rev. B 76, 085405 (2007).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code