Responsive image
博碩士論文 etd-0525113-150153 詳細資訊
Title page for etd-0525113-150153
論文名稱
Title
含氮雜環發光體之群聚增強發光及壓致變色
Aggregation Enhanced Emission and Piezochromism of Nitrogen Containing Heterocyclic Luminogen
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
112
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-20
繳交日期
Date of Submission
2013-06-25
關鍵字
Keywords
壓致變色材料、熱致變色材料、氫鍵、聚集增益發光、限制分子內轉動
restricted intramolecular rotation (RIR), aggregation enhanced emission(AEE), piezochromic materials, thermochromic materials, Hydrogen bond
統計
Statistics
本論文已被瀏覽 5684 次,被下載 108
The thesis/dissertation has been browsed 5684 times, has been downloaded 108 times.
中文摘要
摘要-1
本研究合成了兩種具有三臂及壓致變色性質之有機新穎發光材料tris(4-(4-phenylquinolin-2-yl)phenyl)amine (TPA-3Qu)和tris(4-(6-(9H-carbazol-9yl)-4-phenylquinolin-2-yl)phenyl)amine (TPA-3QuCz)。兩者皆具有特殊的壓力敏感性質,在壓力的作用下,皆會產生發光體放光波段發生改變之特殊性。不論是TPA-3QuCz或TPA-3Qu,其分子設計,皆是以具角錐狀構型(pyramidal)之三苯胺(triphenylamine)為分子中心。若中心延伸出去為較大的喹啉咔唑基團,即為TPA-3QuCz分子。TPA-3QuCz為一非結晶性物質,在微小的壓力作用下,即可產生高達112奈米的放光波段紅位移之現象。相反的,若是以三苯胺為中心延伸出去是較小的喹啉基團,即為TPA-3Qu分子。TPA-3Qu 為一結晶性物質,在巨大的壓力作用下(10 MPa)僅能產生相對較小的32奈米放光波段紅位移之現象。除了對壓力具有特殊敏感性外,TPA-3QuCz和TPA-3Qu也皆為熱致變色材料,在加熱的狀態下,兩者皆可產生與壓致變色相同成的放光紅位移現象。對於TPA-3QuCz 及TPA-3Qu 具有壓力及熱敏感性之性質,本文提出了分子構型平面化之模型解釋之。
摘要-2
此研究主題,合成了兩者新型態有機發光體,皆以四苯基噻吩 (TP) 為中心主幹,經由赫克反應 (Heck reaction),接上了具有雙鍵的吡啶(pyridine)小基團和具有雙鍵的三苯胺(triphenylamine)大基團取代基,分別命名為TP-2Py 和 TP-2TPA。經由一系列光致放光測試,得知兩者皆具有聚集增益放光效應 (Aggregation Emission Enhancement effect),比較TP-2Py 和 TP-2TPA 兩者的放光強度,發現無論在任何狀態的液態或固態下,TP-2TPA的放光效率(F)皆高於TP-2Py。借由變溫過程,探討液態狀況下TP-2Py 和TP-2TPA的放光性質,以及電腦模擬的輔助下,得知 TP-2TPA 相較於TP-2Py 具有較強的分子限制轉動能力。也因為具有較強的分子限制轉動,所以 TP-2TPA 可以抑制非放光型態的能量損失,進而擁有較好的放光效率。另一方面,我們也藉由混參 (blending) 聚乙烯醇 (polyvinyl alcohol) 於 TP-2Py 和 TP-2TPA 兩分子中,使得TP-2Py 和TP-2TPA 的含氮雜環,可與聚乙烯醇中的 -OH 官能基形成氫鍵,進而限制轉動,而有更進一步的增強發光效應。
Abstract
Abstract - 1
Two tri-armed piezofluorochromic compounds of tris(4-(4-phenylquinolin-2-yl)phenyl)amine (TPA-3Qu) and tris(4-(6-(9H-carbazol-9yl)-4-phenylquinolin-2-yl)phenyl)amine (TPA-3QuCz) were prepared and found to exhibit keen fluorescence responses toward pressurization. With the framework of a twisted, pyramidal triphenylamine (TPA) center connecting to three large quinolinecarbazole (QuCz) arms, TPA-3QuCz is amorphous material exhibiting a large bathochromic shift of 112 nm under gentle grinding forces, which is in widely contrast to the small shift of 32 nm for TPA-3Qu when subjected to a high pressure load of 10 MPa. By heating to high temperatures, both TPA-3QuCz and TPA-3Qu also exhibited the same bathochromic shifts as pressurization did. Conformational transformations involving planarization of the arms were proposed to account for the observed fluorescence responses of TPA-3QuCz and TPA-3Qu towards pressure and heating.
Abstract -2
In this study, organic molecules of 4,4'-((1E,1'E)-((3,4-diphenylthiophene-2,5-diyl)bis(4,1-phenylene))bis(ethene-2,1-diyl))dipyridine (TP-2Py) with smaller substituent and 4,4'-((1E,1'E)-((3,4-diphenylthiophene-2,5-diyl)bis(4,1-phenylene))bis(ethene-2,1-diyl))bis(N,N-diphenylaniline) (TP-2TPA) with stronger substituent were prepared and characterized to identify
their photoluminescent (PL) responses toward the effect of aggregation emission enhancement (AEE). Comparing the fluorescence intensity for TP-2Py and TP-2TPA , no matter in the solid or solution state, the fluorescence of TP-2TPA is stronger than the TP-2Py. By the study influence of temperature on solution emissions of TP-2Py and TP-2TPA, and computer simulation, we realized the compound of TP-2TPA which could effective restriction on molecular rotation than the compound of TP-2Py. With the effector of effective restriction on molecular rotation, TP-2TPA can block the non-radiative energy loss, to enhance the efficiency of luminescence.
In another way, we also blends with hydroxyl-containing components (poly( vinyl alcohol) (PVA)) on both compounds,TP-2Py and tp-2TPA,. After blending with the hydroxyl components, the fluorescence can be further intensified due to the further restricted molecular rotation, though the facile intermolecular hydrogen-bond (H-bond) interactions between the nitrogen containing heterocyclic and the hydroxyl functions.
目次 Table of Contents
Abstract-1 (in Chinese).……………………………………………………………...i
Abstract-2 (in Chinese)………………………………………………………..ii
Abstract-1(in English)………………………………………………………………...iii
Abstract-2(in English)………………………………………………………………iv
Outline of Contents……………………………………………………………………v
List of Scheme……………….………………………………………..….………….vii
List of Figure…………………………………………………………………...........viii
List of Table……………...………………………………………….…………………x
Chapter 1 Highly-Sensitive Piezochromic Fluorophores with Tri-Armed Framework containing Triphenyl-Quinoline-Carbazole Moiety…………………………………...1
1-1 Introduction………………………………………………………………………..1
1-2 Experimental………………...................................................................................4
1-3 Results and discussion …………………………………………………………12
1-4 Conclusions………………………………………………………………………32
Chapter 2 Enhanced Emission by Restriction of Molecular Rotation
2-1.Introduction………………………………………………………………………33
2-2 Experimental.…………………………………………………………………….36
2-3 Results and Discussion.………………………………………………………….41
2-4 Conclusions…………………………………………….………………………60
Reference and Notes………………………………………………………………..61
Supporting Information……………………………………………………………..67
參考文獻 References
Reference and Notes
(1) R. Yerushalmi, A. Scherz, M. E. Boom, H. B. Kraatz, J. Mater. Chem. 2005, 15, 4480.
(2) Y. Sagara, T. Kato, Nat. Chem. 2009, 1, 605.
(3) Z. Chi, X. Zhang, B. Xu, X. Zhou, C. Ma, Y. Zhang, S. Liu, J. Xu, Chem. Soc. Rev. 2012, 41, 3878.
(4) A. Pucci, G. Ruggeri, J. Mater. Chem. 2011, 21, 8282.
(5) K. Ariga, T. Mori, J. P. Hill, Adv. Mater. 2012, 24, 158.
(6) C. Lowe, C. Weder, Adv. Mater. 2002, 14, 1625.
(7) J. Kunzelman, M. Kinami, B. R. Crenshaw, J. D. Protasiewicz, C. Weder, Adv. Mater. 2008, 20, 119.
(8) N. Mizoshita, T. Tani, S. Inagaki, Adv. Mater. 2012, 24, 3350.
(9) M. S. Kwon, J. Gierschner, S. J. Yoon, S. Y. Park, Adv. Mater. 2012, 24, 5487.
(10) X. Luo, J. Li, C. Li, L. Heng, Y. Q. Dong, Z. Z. Bo, B. Z Tang, Adv. Mater. 2011, 23, 3261.
(11) Y. Sagara, T. Mutai, I. Yoshikawa, I. K. Araki, J. Am. Chem. Soc. 2007, 129, 1520.
(12) G. Zhang, J. Lu, M. Sabat, C. L. Fraser, J. Am. Chem. Soc. 2010, 13, 2160.
(13) S. J. Yoon, J. W. Chung, J. Gierschner, K. S. Kim, M. G. Choi, D. Kim, S. Y. Park, J. Am. Chem. Soc. 2010, 132, 13675.
(14) J. Wang, J. Mei, R. Hu, J. Z. Sun, B. Z. Tang, J. Am. Chem. Soc. 2012, 134, 9956.
(15) M. J. Teng, X. R. Jia, X. F. Chen, Y. Wei, Angew. Chem. Int. Ed. 2012, 51, 6398.
(16) Y. Dong, B. Xu, J. Zhang, X. Tan, L. Wang, J. Chen, H. Lv, S. Wen, B. Li, L. Ye, B. Zou, W. Tian, Angew. Chem. Int. Ed. 2012, 51, 10782.
(17) C. Dou, L. Han, S. Zhao, H. Zhang, Y. Wang, J. Phys. Chem. Lett. 2011, 2, 666.
(18) S. Varghese, S. Das, J. Phys. Chem. Lett. 2011, 2, 863.
(19) S. J. Yoon, S. Y. Park, J. Mater. Chem. 2011, 21, 8338.
(20) Y. Wang, W. Liu, L. Bu, J. Li, M. Zheng, D. Zhang, M. Sun, Y. Tao, S. Xue, W. Yang, J. Mater. Chem. C, 2013, 1, 856.
(21) L. Bu, M. Sun, D. Zhang, W. Liu, Y. Wang, M. Zheng, S. Xue, W. Yang, J. Mater. Chem. C, 2013, 1, 2028.
(22) S. Yamaguchi, I. Yoshikawa, T. Mutai, K. Araki, J. Mater. Chem., 2012, 22, 20065.
(23) X. Zhang, Z. Chi, J. Zhang, H. Li, B. Xu, X. Li, S. Liu, Y. Zhang, J. Xu, J. Phys. Chem. B. 2011, 115, 7606.
(24) X. Luo, W. Zhao, J. Shi, C. Li, Z. Liu, Z. Bo, Y. Q. Dong, B. Z. Tang, J. Phys. Chem. C 2012, 116, 21967.
(25) X. Zhang, Z. Chi, X. Zhou, S. Liu, Y. Zhang, J. Xu, J. Phys. Chem. C 2012, 116, 23629.
(26) B. Xu, Z. Chi, X. Zhang, H. Li, C. Chen, S. Liu, Y. Zhang, J. Xu, Chem. Commun. 2011, 47, 11080.
(27) Z. Zhang, D. Yao, T. Zhou, H. Zhang, Y. Wang, Chem. Commun., 2011, 47, 7782.
(28) F. Chen, J. Zhang, X. Wan, Chem. Eur. J. 2012, 18, 4558.
(29) J. K. Stille, Macromolecules 1981, 14, 870.
(30) S. W. Thomas III, G. D. Joly, T. M. Swager, Chem. Re . 2007, 107, 1339.
(31) M. Belletete, J. Bouchard, M. Leclerc, G. Durocher, Macromolecules 2005, 38, 880.
(32) A. Menon, M. Galvin, K. A. Walz, L. Rothberg, Synth. Met. 2004, 141, 197.
(33) C. T. Chen, Chem. Mater. 2004, 16, 4389.
(34) M. Grell, D. D. C. Bradley, G. Ungar, J. Hill, K. S. Whitehead, Macromolecules 1999, 32, 5810.
(35) R. Jakubiak, C. J. Collison, W. C. Wan, L. Rothberg, J. Phys. Chem. A 1999, 103, 2394.
(36) M. Grell, D. D. C. Bradley, X. Long, T. Chamberlain, M. Inbasekaran, E. P. Woo, M. Soliman, Acta Polym. 1998, 49, 439.
(37) U. Lemmer, S. Heun, R. F. Mahrt, U. Scherf, M.Hopmeier, U.Siegner, E. O. Gobel, K. Mullen, H. Bassler, Chem. Phys. Lett. 1995, 240, 373.
(38) J. Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, B. Z. Tang, Chem. Commun. 2001, 1740.
(39) B. Z. Tang, X. Zhan, G. Yu, P. P. S. Lee, Y. Liu, D. Zhu, J.Mater. Chem. 2001, 11, 2974.
(40) Y. Hong, J. W. Y. Lama, B. Z. Tang, Chem. Commun. 2009, 4332.
(41) C. J. Bhongale, C. S. Hsu, Angew. Chem., Int. Ed. 2006, 45, 1404.
(42) H. Tong, Y. Hong, Y. Dong, M. Haussler, J. W. Y. Lam, Z. Guo, Z. Li, Z. Guo, B. Z. Tang, Chem. Commun. 2006, 3705.
(43) H. Tong, Y. Dong, Y. Hong, M. Haussler, J. W. Y. Lam, H. H. Y. Sung, X. Yu, J. Sun, I. D. Williams, H. S. Kwok, B. Z. Tang, J. Phys. Chem. C 2007, 111, 2287.
(44) S. Dong, Z. Li, J. Qin, J. Phys. Chem. B 2009, 113, 434.
(45) B. K. An, S. K. Kwon, S. D.Jung, S. Y. Park, J. Am. Chem. Soc. 2002, 124, 14410.
(46) Z. Wang, H. Shao, J. Ye, L. Tang, P. Lu, J. Phys. Chem. B 2005, 109, 19627.
(47) H. Tong, Y. Hong, Y. Dong, Y. Ren, M. Haussler, J. W. Y. Lam, K. S. Wong, B. Z. Tang, J. Phys. Chem. B 2007, 111, 2000.
(48) J. Chen, B. Xu, X. Quyang, B. Z. Tang, Y. Cao, J. Phys. Chem. A 2004, 108, 7522.
(49) C. X. Yuan, X. T. Tao, L. Wang, J. X. Yang, M. H. Jiang, J. Phys. Chem. C 2009, 113, 6809.
(50) Y. Liu, X. Tao, F. Wang, X. Dang, D. Zou, Y. Ren, M. Jiang, J. Phys. Chem. C 2008, 112, 3975.
(51) Y. Liu, X. Tao, F. Wang, J. Shi, J. Sun, W. Yu, Y. Ren, D. Zou, M. Jiang, J. Phys. Chem. C 2007, 111, 6544.
(52) Q. Zeng, Z. Li, Y. Dong, C. Di, A. Qin, Y. Hong, L. Ji, Z. Zhu, C. K. W. Jim, G. Yu, Q. Li, Z. Li, Y. Liu, Y. Qin, B. Z. Tang, Chem. Commun. 2007, 70.
(53) Y. Li, F. Li, H. Zhang, Z. Xie, W. Xie, H. Xu, B. Li, F. Shen, L. Ye, M. Hanif, D. Ma, Y. Ma, Chem. Commun. 2007, 231.
(54) J. Chen, Z. Xie, J. W. Y. Lam, C. C. W. Law, B. Z. Tang, Macromolecules 2003, 36, 1108.
(55) Y. Ren, Y. Dong, J. W. Y. Lam, B. Z. Tang, K. S. Wong, Chem. Phys. Lett. 2005, 402, 468.
(56) Y. Ren, J. W. Y. Lam, Y. Dong, B. Z. Tang, K. S. Wang, J. Phys. Chem. B 2005, 109, 1135.
(57) M. Wang, D. Zhang, G. Zhang, D. Zhu, Chem. Phys. Lett. 2009, 475, 64.
(58) J. Chen, C. C. W. Law, J. W. Y. Lam, Y. Dong, S. M. F. Lo, lan D. Williams, D. Zhu, B. Z. Tang, Chem. Mater. 2003, 15, 1535.
(59) A. Qin, C. K. W. Jim, Y. Tang, J. W. Y. Lam, J. Liu, F. Mahtab, P. Gao, B. Z. Tang, J. Phys. Chem. B 2008, 112, 9281.
(60)Y. Liu, X. Tao, F. Wang, J. Shi, J. Sun, W. Yu, Y. Ren, D. Zou M. Jiang, J. Phys. Chem. C, 2007, 111, 6544.
(61) P. Zhang, H. Wang, H. Liu, M. Li, Langmuir, 2010, 26, 10183.
(62)T. H. Kim, M. S. Choi, B. H. Sohn, S. Y. Park, W. S. Lyoo, T. S. Lee, Chem. Commun., 2008, 2364.
(63) J. H. Wan, L. Y. Mao, Y. B. Li, Z. F. Li, H. Y. Qiu, C. Wang, G. Q. Lai, Soft Matter, 2010, 6, 3195.
(64) M. K. Nayak, J. Photochem. Photobiol., A, 2011, 217, 40.
(65) B. Valeur, Molecular Fluorescence Principle and Application, New York , WILEY-VCH. 2002.
(66) N. Thomas, Organic Chemistry, Sorrell University Science Book, 2006, 152.
(67) A. Pourjavadi, M. R. Zamanlu, M. J. Zohuriaan-Mehr, J. Appl. Polym. Sci. 2000, 77, 1144.
(68) Y. Imai, N. N. Maldar, M. Kakimoto, J. Polym. Sci. Polym. Chem. Ed. 1984, 22, 2189.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code