Responsive image
博碩士論文 etd-0525114-105343 詳細資訊
Title page for etd-0525114-105343
論文名稱
Title
多元醇還原之電紡Ag/polymer纖維及導電薄膜特性探討
The investigation of characteristics of electrospun Ag/polymer fibers and conductive films fabricated by Polyol reduction process
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
181
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-23
繳交日期
Date of Submission
2014-06-25
關鍵字
Keywords
田口法、奈米銀複合纖維、奈米銀線、多元醇法、近場靜電紡絲
Near-field electrospinning process, Silver nanowire composite fibers, Taguchi Methods, Polyol method, Silver nanowire
統計
Statistics
本論文已被瀏覽 5667 次,被下載 0
The thesis/dissertation has been browsed 5667 times, has been downloaded 0 times.
中文摘要
由於透明導電薄膜關鍵材料銦錫氧化物(ITO)的上游原料銦礦價格波動大,隨著產業需求與日劇增,促使產業界與學術界開發新型的材料取代ITO。故本論文提出應用新式的近場靜電紡絲(Near-field Electrospinning)之製程技術,將有機高分子材料結合奈米銀粒子及奈米線製作出透明、有序之導電奈米銀複合纖維。利用多元醇法的製程參數來探討奈米銀線,其中包括:反應溫度、反應時間、攪拌速度、硝酸銀進給速度及其它反應物添加至反應瓶內的成份比例;利用田口法製備最佳化奈米銀線電紡溶液及收集奈米銀複合纖維,並控制製程參數來探討導電複合纖維,其中包括:電紡速率、電場大小、溶液配置的攪拌速度、攪拌時間、添加聚合物、奈米銀粒子的含量及乙醇至反應瓶內的成份比例。將電纺所收集到的複合纖維利用掃描式電子顯微鏡(SEM)及X光微區分析(EDS)進行微觀表面型態、材料成份及特性、並利用n & K Analyzer量測薄膜之厚度與穿透度關係以及使用四點探針量測薄膜片電阻,另外針對所製程的奈米銀線利用穿透式電子顯微鏡(TEM)分析材料的特性及觀察微區形貌及聚合物殘餘程度。本實驗結果顯示PVP於8-12wt%及PVA在25wt%時在有最好的電纺配置參數;奈米銀線複合溶液在特定參數配製下能紡絲出複合纖維,但在電壓超過14 KV時在纖維中的奈米銀線有爆裂的現象出現;本實驗能成功優化製作出奈米銀線約26.9奈米之線徑及10.2微米之線長,其薄膜片電阻能達到0.017 Ω/sq。穿透度量測結果發現當奈米銀線膜厚增加100 Å時,穿透率即約會下降5%。而利用穿透式電子顯微鏡發現奈米銀線的(100)面上仍有約1~2nm的聚乙烯吡喀烷酮殘留。另外,PVP/AgNPs/PANi複合導電薄膜其片電阻可達到約213.690 Ω/sq,並成功的利用NFES製作出具有導電性質的複合纖維,而其片電阻值為220 KΩ/sq。
Abstract
We propose a near-field electrospinning process (NFES) technology which combines organic polymer and silver nanoparticles (AgNPs) and silver nanowires (AgNWs) to fabricate transparent, orderly AgNWs conductive composite fibers. The AgNWs are investigated by the deployed parameters of Polyol method including reaction temperature, reaction time, rate of stirring, rate of adding AgNO3 and the proportion of others reactants. The Taguchi method is used to fabricate optimal AgNWs solution and collect nano-composite fibers. The silver nanowire composite fibers are investigated by the controlling of deployed parameters including rate of electrospinning, the electric field, stirring rate and time, added polymer, the amount of AgNPs and the proportion of Ethanol. The composite fibers fabricated with electrospinning are analyzed to obtain the morphology, the relation between film thickness and transmittance, material characteristics and the sheet resistance of film. The material characteristic of AgNWs and the residual polymer of the deployed AgNWs are analyzed. From the results, the 8-12wt% PVP and 25wt% PVA are the best deployed parameter. The AgNWs solution with specific deployed parameter can be used to fabricate composite fibers. However, the AgNWs in the fibers are broken when the applied voltage is over 14 KV. In this study, the AgNWs with 26 nm diameter and 10µm length and 0.017 Ω/sq sheet resistance of film can be fabricated. From the result of transmittance measurement, the thickness of silver nanowires film increases 100Å and the transmittance decreases 5%. Moreover, from the measurement of Transmission Electron Microscopy (TEM), there is still 1~2 nm PVP existing on the (100) side of silver nanowire. Moreover, the sheet resistance of PVP/AgNPs/PANi composite conductive film and composite conductive fibers is 213.690 Ω/sq and 220 KΩ/sq.
目次 Table of Contents
第一章 序論 1
1.1 前言 1
1.2 研究背景 1
1.3 研究動機與目的 2
1.4 本文架構 3
第二章 文獻回顧 5
2.1 奈米材料的製備方法 5
2.1.1模板合成法 6
2.1.2晶種生成法 6
2.1.3光還原法 7
2.1.4水熱合成法 8
2.1.5奈米結構自組裝法 11
2.1.6多元醇化學還原法 12
2.2.高分子聚合物 14
2.2.1導電高分子 15
2.2.2導電高分子機制及種類 16
2.2.3導電高分子聚合物特性 19
2.2.4導電高分子聚合形式 20
2.2.5導電高分子摻雜形式 21
2.3聚苯胺高分子 22
2.3.1聚苯胺單體結構 22
2.3.2聚苯胺化學結構及特性 22
2.4 製作原理 26
2.4.1多元醇化學還原法 26
2.4.2靜電紡絲製程技術 29
2.4.3 透明導電薄膜技術 34
2.4.4 田口品質工程法 39
第三章 研究方法 42
3.1 實驗架構 42
3.1.1聚合物纖維電紡之規劃 43
3.1.2田口法製作奈米銀線複合纖維 44
3.1.3奈米銀線合成之規劃 47
3.1.4導電薄膜製程之規劃 50
3.2 電紡與電噴霧法製程 51
3.2.1 實驗步驟 51
3.2.2 電紡與電噴製程參數操作條件 51
3.3 實驗藥品與設備 53
3.3.1溶液配置與奈米銀線成長所需之設備 53
3.3.2 電紡與電噴霧法製程所需之設備 57
3.4實驗分析儀器 60
3.4.1 四點探針 60
3.4.2 X光射線粉末繞射儀分析 62
3.4.3 掃描式電子顯微鏡分析 64
3.4.4 傅里葉轉換紅外線光譜儀 65
3.4.5 薄膜特性分析儀 66
3.4.6 穿透式電子顯微鏡 67
第四章 實驗結果與討論 68
4.1聚合物纖維電紡分析及探討 69
4.1.1 PVP聚合物纖維電紡分析及探討 69
4.1.2 PVA聚合物纖維電紡分析及探討 74
4.2 田口法製作奈米銀線複合纖維分析及探討 78
4.2.1奈米銀線複合材料電紡溶液分析及探討 79
4.2.2奈米銀線複合纖維電紡分析及探討 85
4.2.3田口品質工程之製程最佳化 87
4.2.4田口品質工程之變異數分析 89
4.3 奈米銀線合成分析及探討 90
4.3.1 不同還原劑含量對奈米銀成長的影響 91
4.3.2 觸媒晶種的含量對奈米銀成長的影響 97
4.3.3 不同PVP與Ag克重比對奈米銀成長的影響 104
4.3.4 不同反應溫度對奈米銀成長的影響 111
4.3.5 不同反應時間對奈米銀成長的影響 117
4.3.6 不同PVP分子量對奈米銀成長的影響 124
4.3.7 不同觸媒晶種對奈米銀成長的影響 127
4.3.8 添加KBr對奈米銀成長的影響 131
4.3.9 添加AgBr對奈米銀成長的影響 137
4.3.10 不同銀的來源對奈米銀成長的影響 142
4.3.11 能量光譜散射儀成份分析 145
4.3.12 傅里葉轉換紅外光譜分析 146
4.3.13 X光射線粉末繞射儀分析 147
4.3.14 穿透式電子顯微結構分析 148
4.3.15 N & K analyzer薄膜特性分析 150
4.4 導電薄膜分析及探討 151
4.4.1 PVP/AgNPs/PANi複合導電薄膜分析及探討 151
4.4.2 奈米銀線導電薄膜分析及探討 154
第五章 結論與未來展望 156
5.1 結論 156
5.2 未來展望 158
參考文獻 159
參考文獻 References
[1] G. Sergeev, "Synthesis and Stabilization of Nanoparticles," Nanochemistry, pp. 7-36, 2006.
[2] C. Bréchignac, P. Houdy, and M. Lahmani, Nanomaterials and nanochemistry: Springer, 2008.
[3] J. Blackman, Metallic nanoparticles vol. 5: Elsevier, 2008.
[4] 連昭晴, "鐵/金核殼型磁性複合奈米粒子 之製備與應用," 成功大學化學工程學系學位論文, pp. 1-113, 2004.
[5] B. Sun, X. Jiang, S. Dai, and Z. Du, "Single-crystal silver nanowires: preparation and surface-enhanced Raman scattering (SERS) property," Materials Letters, vol. 63, pp. 2570-2573, 2009.
[6] Y. Song, R. M. Garcia, R. M. Dorin, H. Wang, Y. Qiu, E. N. Coker, et al., "Synthesis of platinum nanowire networks using a soft template," Nano letters, vol. 7, pp. 3650-3655, 2007.
[7] G. Yan, L. Wang, and L. Zhang, "Recent research progress on preparation of silver nanowires by soft solution method, preparation of gold nanotubes and Pt nanotubes from resultant silver nanowires and their applications in conductive adhesive," Rev. Adv. Mater. Sci, vol. 24, pp. 10-25, 2010.
[8] N. R. Jana, L. Gearheart, and C. J. Murphy, "Wet chemical synthesis of high aspect ratio cylindrical gold nanorods," The Journal of Physical Chemistry B, vol. 105, pp. 4065-4067, 2001.
[9] C. J. Murphy and N. R. Jana, "Controlling the aspect ratio of inorganic nanorods and nanowires," Advanced Materials, vol. 14, p. 80, 2002.
[10] H. Yu, P. C. Gibbons, K. Kelton, and W. E. Buhro, "Heterogeneous seeded growth: a potentially general synthesis of monodisperse metallic nanoparticles," Journal of the American Chemical Society, vol. 123, pp. 9198-9199, 2001.
[11] S. Jradi, L. Balan, X. Zeng, J. Plain, D. J. Lougnot, P. Royer, et al., "Spatially controlled synthesis of silver nanoparticles and nanowires by photosensitized reduction," Nanotechnology, vol. 21, p. 095605, 2010.
[12] Y. Tao, Y. Wang, M. Fu, and D. He, "One dimensional ZnO nanostrucures grown on ZnO/Si by hydrothermal process," in Nanoelectronics Conference (INEC), 2010 3rd International, 2010, pp. 947-948.
[13] C. Tang, W. Sun, J. Lu, and W. Yan, "Role of the anions in the hydrothermally formed silver nanowires and their antibacterial property," Journal of colloid and interface science, vol. 416, pp. 86-94, 2014.
[14] W. Yang, L. Qu, R. Zheng, Z. Liu, K. R. Ratinac, L. Shen, et al., "Self-assembly of gold nanowires along carbon nanotubes for ultrahigh-aspect-ratio hybrids," Chemistry of materials, vol. 23, pp. 2760-2765, 2011.
[15] H. Shirakawa and S. Ikeda, "Infrared spectra of poly (acetylene)," Polymer Journal, vol. 2, pp. 231-244, 1971.
[16] L. Kurihara, G. Chow, and P. Schoen, "Nanocrystalline metallic powders and films produced by the polyol method," Nanostructured materials, vol. 5, pp. 607-613, 1995.
[17] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, "Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(CH) x," Journal of the Chemical Society, Chemical Communications, pp. 578-580, 1977.
[18] A. G. MacDiarmid, "“Synthetic metals”: A novel role for organic polymers (Nobel lecture)," Angewandte Chemie International Edition, vol. 40, pp. 2581-2590, 2001.
[19] G. A. Snook, P. Kao, and A. S. Best, "Conducting-polymer-based supercapacitor devices and electrodes," Journal of Power Sources, vol. 196, pp. 1-12, 2011.
[20] L. Duan, J. Lu, W. Liu, P. Huang, W. Wang, and Z. Liu, "Fabrication of conductive polymer-coated sulfur composite cathode materials based on layer-by-layer assembly for rechargeable lithium–sulfur batteries," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 414, pp. 98-103, 2012.
[21] S. I. Cho and S. B. Lee, "Fast electrochemistry of conductive polymer nanotubes: synthesis, mechanism, and application," Accounts of chemical research, vol. 41, pp. 699-707, 2008.
[22] G. Li, R. Zhu, and Y. Yang, "Polymer solar cells," Nature Photonics, vol. 6, pp. 153-161, 2012.
[23] U. Lange, N. V. Roznyatovskaya, and V. M. Mirsky, "Conducting polymers in chemical sensors and arrays," Analytica chimica acta, vol. 614, pp. 1-26, 2008.
[24] X. Lu, W. Zhang, C. Wang, T.-C. Wen, and Y. Wei, "One-dimensional conducting polymer nanocomposites: synthesis, properties and applications," Progress in Polymer Science, vol. 36, pp. 671-712, 2011.
[25] M. R. Choi, S. H. Woo, T. H. Han, K. G. Lim, S. Y. Min, W. M. Yun, et al., "Polyaniline‐Based Conducting Polymer Compositions with a High Work Function for Hole‐Injection Layers in Organic Light‐Emitting Diodes: Formation of Ohmic Contacts," ChemSusChem, vol. 4, pp. 363-368, 2011.
[26] 黃桂武, "軟性印製透明導電高分子材料技術發展," 光連: 光電產業與技術情報, pp. 58-65, 2012.
[27] J. Stejskal, P. Kratochvil, and A. D. Jenkins, "The formation of polyaniline and the nature of its structures," Polymer, vol. 37, pp. 367-369, 1996.
[28] E. Venancio, A. Motheo, F. Amaral, and N. Bocchi, "Performance of polyaniline electrosynthesized in the presence of trichloroacetic acid as a battery cathode," Journal of power sources, vol. 94, pp. 36-39, 2001.
[29] S. Uemura, K. Teshima, S. Tokuda, N. Kobayashi, and R. Hirohashi, "Photopolymerized Conducting Potyaniline Micropattern and Its Application," Synthetic metals, vol. 101, pp. 701-702, 1999.
[30] A. Patil, Y. Ikenoue, N. Basescu, N. Colaneri, J. Chen, F. Wudl, et al., "Self-doped conducting polymers," Synthetic metals, vol. 20, pp. 151-159, 1987.
[31] D. M. Mohilner, R. N. Adams, and W. J. Argersinger, "Investigation of the kinetics and mechanism of the anodic oxidation of aniline in aqueous sulfuric acid solution at a platinum electrode," Journal of the American Chemical Society, vol. 84, pp. 3618-3622, 1962.
[32] A. G. MacDiarmid, S.-L. Mu, N. L. Somasiri, and W. Wu, "Electrochemical characteristics of “polyaniline” cathodes and anodes in aqueous electrolytes," Molecular Crystals and Liquid Crystals, vol. 121, pp. 187-190, 1985.
[33] R. Blair, H. Shepherd, T. Faltens, P. C. Haussmann, R. B. Kaner, S. H. Tolbert, et al., "Construction of a polyaniline nanofiber gas sensor," Journal of Chemical Education, vol. 85, p. 1102, 2008.
[34] Y. Sun, B. Gates, B. Mayers, and Y. Xia, "Crystalline silver nanowires by soft solution processing," Nano Letters, vol. 2, pp. 165-168, 2002.
[35] B. J. Wiley, S. H. Im, Z.-Y. Li, J. McLellan, A. Siekkinen, and Y. Xia, "Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis," The Journal of Physical Chemistry B, vol. 110, pp. 15666-15675, 2006.
[36] S. Ino, "Stability of multiply-twinned particles," Journal of the Physical Society of Japan, vol. 27, pp. 941-953, 1969.
[37] Y. Sun, Y. Yin, B. T. Mayers, T. Herricks, and Y. Xia, "Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly (vinyl pyrrolidone)," Chemistry of Materials, vol. 14, pp. 4736-4745, 2002.
[38] J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, "Solution-processed metal nanowire mesh transparent electrodes," Nano Letters, vol. 8, pp. 689-692, 2008.
[39] J. Chen, B. J. Wiley, and Y. Xia, "One-dimensional nanostructures of metals: large-scale synthesis and some potential applications," Langmuir, vol. 23, pp. 4120-4129, 2007.
[40] R. Gottesman, A. Tangy, I. Oussadon, and D. Zitoun, "Silver nanowires and nanoparticles from a millifluidic reactor: application to metal assisted silicon etching," New Journal of Chemistry, vol. 36, pp. 2456-2459, 2012.
[41] G. Taylor, "Electrically driven jets," Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 313, pp. 453-475, 1969.
[42] L. Rayleigh, "XX. On the equilibrium of liquid conducting masses charged with electricity," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 14, pp. 184-186, 1882.
[43] J. Cooley, "inventor," ed: US Patent US692,631, 1902.
[44] W. Morton, "Method of dispersing fluids: US, 705691," ed, 1902.
[45] W. Teo and S. Ramakrishna, "A review on electrospinning design and nanofibre assemblies," Nanotechnology, vol. 17, p. R89, 2006.
[46] C. Chang, Y.-K. Fuh, and L. Lin, "A direct-write piezoelectric PVDF nanogenerator," in Solid-State Sensors, Actuators and Microsystems Conference, 2009. TRANSDUCERS 2009. International, 2009, pp. 1485-1488.
[47] C. Chang, V. H. Tran, J. Wang, Y.-K. Fuh, and L. Lin, "Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency," Nano letters, vol. 10, pp. 726-731, 2010.
[48] D. Sun, C. Chang, S. Li, and L. Lin, "Near-field electrospinning," Nano letters, vol. 6, pp. 839-842, 2006.
[49] J. Pu, X. Yan, Y. Jiang, C. Chang, and L. Lin, "Piezoelectric actuation of direct-write electrospun fibers," Sensors and Actuators A: Physical, vol. 164, pp. 131-136, 2010.
[50] C. Chang, K. Limkrailassiri, and L. Lin, "Continuous near-field electrospinning for large area deposition of orderly nanofiber patterns," Applied Physics Letters, vol. 93, p. 123111, 2008.
[51] J. Pu, X. Yan, Y. Jiang, C. Chang, and L. Lin, "Piezoelectric actuation of a direct write electrospun PVDF fiber," in Micro Electro Mechanical Systems (MEMS), 2010 IEEE 23rd International Conference on, 2010, pp. 1163-1166.
[52] L. Wannatong, A. Sirivat, and P. Supaphol, "Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene," Polymer International, vol. 53, pp. 1851-1859, 2004.
[53] D. H. Reneker and I. Chun, "Nanometre diameter fibres of polymer, produced by electrospinning," Nanotechnology, vol. 7, p. 216, 1996.
[54] C. J. Buchko, L. C. Chen, Y. Shen, and D. C. Martin, "Processing and microstructural characterization of porous biocompatible protein polymer thin films," Polymer, vol. 40, pp. 7397-7407, 1999.
[55] S. L. Shenoy, W. D. Bates, H. L. Frisch, and G. E. Wnek, "Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer–polymer interaction limit," Polymer, vol. 46, pp. 3372-3384, 2005.
[56] S. Megelski, J. S. Stephens, D. B. Chase, and J. F. Rabolt, "Micro-and nanostructured surface morphology on electrospun polymer fibers," Macromolecules, vol. 35, pp. 8456-8466, 2002.
[57] L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans, and Y. Cui, "Scalable coating and properties of transparent, flexible, silver nanowire electrodes," ACS nano, vol. 4, pp. 2955-2963, 2010.
[58] T. Kim, A. Canlier, G. H. Kim, J. Choi, M. Park, and S. M. Han, "Electrostatic spray deposition of highly transparent silver nanowire electrode on flexible substrate," ACS applied materials & interfaces, vol. 5, pp. 788-794, 2013.
[59] J. van de Groep, P. Spinelli, and A. Polman, "Transparent conducting silver nanowire networks," Nano letters, vol. 12, pp. 3138-3144, 2012.
[60] T. Tokuno, M. Nogi, M. Karakawa, J. Jiu, T. T. Nge, Y. Aso, et al., "Fabrication of silver nanowire transparent electrodes at room temperature," Nano Research, vol. 4, pp. 1215-1222, 2011.
[61] A. Kim, Y. Won, K. Woo, C.-H. Kim, and J. Moon, "Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells," ACS nano, vol. 7, pp. 1081-1091, 2013.
[62] 魏振育, "決定關鍵失效因素與解決問題算則之建構," 2010.
[63] 蘇木春 and 張孝德, "機器學習: 類神經網路, 模糊系統以及基因演算法則," 全華科技圖書股份有限公司 印行, 2003.
[64] 蘇朝墩, 品質工程: 中華民國品質學會, 2002.
[65] 陳明佑, "利用模糊目標規劃法求解田口式多品質特性最佳化問題," 成功大學工業管理科學系學位論文, pp. 1-69, 2002.
[66] L. B. Valdes, "Resistivity measurements on germanium for transistors," Proceedings of the IRE, vol. 42, pp. 420-427, 1954.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.91.8.23
論文開放下載的時間是 校外不公開

Your IP address is 3.91.8.23
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code