Responsive image
博碩士論文 etd-0525114-155656 詳細資訊
Title page for etd-0525114-155656
論文名稱
Title
研製具ITO布拉格反射鏡之液晶可調頻濾波器
Developing liquid crystal tunable filters with ITO Distributed Bragg reflectors
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
67
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-19
繳交日期
Date of Submission
2014-06-25
關鍵字
Keywords
液晶、Fabry-Perot cavity、氧化銦錫、多孔隙結構、布拉格反射鏡、超臨界流體
Fabry-Perot cavity, supercritical CO2, Distributed Bragg reflectors, liquid crystal, porous, Indium tin oxide
統計
Statistics
本論文已被瀏覽 5921 次,被下載 1190
The thesis/dissertation has been browsed 5921 times, has been downloaded 1190 times.
中文摘要
本論文研究目的是研製具ITO布拉格反射鏡(Distributed Bragg Reflector,DBR)之液晶可調頻濾波器。ITO DBR是由多孔隙氧化銦錫/氧化銦錫之雙層結構所堆疊而成,低折射率之多孔隙氧化銦錫薄膜是以低溫超臨界二氧化碳(Supercritical CO2,SCCO2)流體製程加工於旋轉塗佈之Sol-gel ITO薄膜而成,而高折射率的緻密氧化銦錫薄膜是以室溫long-throw磁式濺鍍法所成長。多孔隙氧化銦錫及濺鍍氧化銦錫薄膜的折射率分別為1.52及2.07。在玻璃基板上4.5個period相互堆疊後,在光譜波長為505nm處的反射率為85.7%,截止帶寬為131.8nm,等效電阻率約為2.25×10-3Ωcm。
液晶可調頻濾波器是將液晶灌注於兩ITO DBR所構成的共振腔而成。在此元件中,ITO DBR可同時作為導電電極及高反射鏡使用,如此一來,由於共振腔的長度相較於使用傳統介電材料之DBR為短,元件之操作電壓可大幅降低。我們使用兩種液晶配向方法,摻有偶氮染料的向列型E7液晶,再進行光配向與直接在DBR表面進行摩擦配向。E7材料的折射率參數為no=1.5198、ne=1.7429。目前以4.5個period之ITO DBR及鋁電極所形成之共振腔,液晶的光學異向性使沿著非尋常光方向的模態藉由電壓來調變,使用摩擦配向製程方法的調變範圍為58.2nm,而光配向製程方法的調變範圍為57nm。
Abstract
In this study, conductive distributed Bragg reflectors (DBRs) on glass substrates based on dense ITO(Indium tin oxide) and porous ITO bilayers were proposed as a high-reflectivity mirror of the liquid crystal (LC) tunable filters. In the fabrication of the DBRs, the low refractive index porous ITO films were obtained by applying supercritical CO2 treatment at different temperatures and pressures on the spin-coated sol-gel ITO films. On the other hand, the high refractive index ITO films were grown at room temperature by long-throw reactive ratio-frequency magnetron sputtering. The refractive indices of the porous ITO films and dense ITO films were 1.52 and 2.07, respectively. On glass substrates, the DBR with 4.5 period ITO bilayers, the optical reflectance of 85.7 % was achieved. The stop band and the effective resistivity is 131.8 nm and 2.25×10-3 Ω-cm, respectively.
The liquid crystal tunable filters was fabricated by the combination ITO DBR with an intra-cavity liquid crystal material. In this device, ITO DBR was used as the conductive electrode and the high reflection mirror. The operation voltage of the proposed tunable filter can be reduced, because the cavity length of the device is considerably shortened in comparison with that of a conventional tunable LC filter using dielectric DBR. The LC of the devices was anchored by both rubbing and photo-alignment techniques, and their correspondent wavelength tunable ranges were 58.2nm and 57nm, respectively.
目次 Table of Contents
目錄
第一章 導論 1
1-1 引言 1
1-2分佈式布拉格反射鏡(Distributed Bragg reflectors) 2
1-2-1 分佈式布拉格反射鏡原理 4
1-2-2 導電式布拉格反射鏡研究 7
1-3 Fabry-Perot cavity理論 8
1-4 液晶 13
1-5 研究動機 15
第二章 製程材料與儀器介紹 17
2-1 氧化銦錫與溶凝膠狀氧化銦錫 17
2-2 Radio-frequency(RF)磁式濺鍍系統 19
2-3 超臨界系統 21
2-4液晶與配向 24
2-4-1材料介紹 24
2-4-2 使用設備 25
2-5 量測儀器介紹 26
2-5-1 四點探針(Four-point-probe) 26
2-5-2 薄膜特性分析儀(n&k analyzer) 27
2-5-3 場發射型掃描式電子顯微鏡(SEM) 27
2-5-4 反射頻譜量測 28
第三章 實驗步驟 29
3-1材料成長條件 29
3-1-1氧化銦錫 29
3-1-2溶凝膠狀氧化銦錫 30
3-2元件製程流程 32
3-2-1布拉格反射鏡製作於玻璃基板之堆疊流程 34
3-2-2 ITO布拉格反射鏡之液晶可調頻濾波器元件製程 35
第四章 結果與討論 38
4-1 具導電性之布拉格反射鏡分析 38
4-1-1 具導電性之布拉格反射鏡光性分析 38
4-1-2 具導電性之布拉格反射鏡電性分析 39
4-1-3 具導電之布拉格反射鏡表面形貌分析 40
4-2 ITO布拉格反射鏡之液晶可調頻濾波器量測 41
4-2-1 可調濾波器之摩擦配向(Rubbing)製程量測 42
4-2-2 可調濾波器之光配向(Optical anchor technique)製程量測 46
第五章結論 51
參考文獻 52
參考文獻 References
參考文獻
[1] W. M. Zhu, W. Zhang, Solid-State Sensors, Actuators and Microsystems
Conference, 2206 (2009).
[2] Y. H. Yao, C. T. Wang, R. R. Chen, H. C. Jau, Y. J. Chiu, T. H. Lin, Opt.
Express, 20, 22872 (2012).
[3] http://en.wikipedia.org/wiki/Visible_light_communication.
[4] http://soe.northumbria.ac.uk/ocr/.
[5] http://soe.northumbria.ac.uk/ocr/.
[6] YannG.Boucher, “Photoluminescence spectra of an optically pumped
erbium-doped micro-cavitywith SiO2/TiO2 distributed Bragg reflectors”, Journal
of Luminescence 129 ,2009.
[7] M. Tanaka, “Enhancement of magneto-optical effect in a GaAs : MnAs hybrid
nanostructure sandwiched by GaAs/AlAs distributed Bragg reflectors: epitaxial
semiconductor-based magneto-photonic crystal”, Journal of Crystal Growth 227
228 ,2001.
[8] Eugene Hecht, “OPTIC”, Addison-Wesley,p.426–p.430,2002.
[9] Daniel P. Puzzo, “Organic Light-Emitting Diode Microcavities from Transparent
Conducting Metal Oxide Photonic Crystals”,Nano Lett. 2011.
[10] Martin F. Schubert, “Distributed Bragg reflector consisting of high- and
low-refractive-index thin film layers made of the same material”,APPLIED
PHYSICS LETTERS 90, 2007.
[11] Eugene Hecht, “OPTIC”, Addison-Wesley,2002.
[12] Amnon Yariv, “Optical Electronics in Modern Communication” Oxford University Press(1997)
[13]http://zh.wikipedia.org/wiki/法布里-珀罗干涉仪
[14] P. G. de Gennes, and J. Prost, “The Physics of liquid crystal,” Clarendon Press, Oxford(1993)
[15] Pochi Yeh, and Claire Gu, “Optics of Liquid crystal Displays,” John Wiley& Sons(1999)
[16] M. Quaas, “Structural studies of ITO thin films with the Rietveld method”, Thin Solid Films 332 ,1998.
[17] Z.M.jarzebski, “Preparation and physical properties of transparent conducting oxide films”, Phys. Star. Sol. A71,1982.
[18] Carrie Donley, “Characterization of Indium-Tin Oxide Interfaces Using X-ray Photoelectron Spectroscopy and Redox Processes of a Chemisorbed Probe Molecule: Effect of Surface Pretreatment Conditions”, Langmuir ,2002.
[19] Yu-Zong Tsai, “Sol-Gel-Derived Transparent Conducting Oxide Films”, CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI) SEP,2002 .
[20] Hong Xiao, “Introduction to semiconductor manufacturing technology”, Ch5, Prentice Hall,2000.
[21] B. Yaglioglu‚“High-mobility amorphous In2O3 –10 wt% ZnO thin film transistors”‚ Appl. Phys. Lett. 89‚062103,2006.
[22] K. Zosel and Angew, “Separation with supercritical gases : Practical applications”, Chem. Int. Ed. Engl, 1978.
[23] WALTER LEITNER, “Supercritical Carbon Dioxide as a Green Reaction Medium for Catalysis”, Acc. Chem. Res,2002.
[24] 張學明,「超臨界流體技術於生醫材料中之應用」, P154-P166,化工技術,第11期,2007。
[25] Alvin H. Romang and James J. Watkins, “Supercritical Fluids for the Fabrication of Semiconductor Devices: Emerging or Missed Opportunities?”, Chem. Rev,2010.
[26] Subramanyam B, “Pharmaceutical processing with Subcritical carbon dioxide",J. Pharm. Sci.,1997.
[27] 陳一帆,“磁式濺鍍氧化銦錫薄膜沉積之後熱處理效應”,國立中山大學光電工程研究所碩士論文,2007。
[28] Wei-Chen Tien, “Porous Metal Oxides and Their Applications”,Department of Photonics National Sun Yat-sen University Doctorate Dissertation,2012.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code