Responsive image
博碩士論文 etd-0525115-155233 詳細資訊
Title page for etd-0525115-155233
論文名稱
Title
鈣鈦礦太陽能電池鄰近晶界的能帶結構
Band structures near grain boundaries of perovskite solar cells
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
56
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-03-27
繳交日期
Date of Submission
2015-06-25
關鍵字
Keywords
太陽能電池、掃描穿隧能譜、能帶彎曲、掃描穿隧顯微鏡、鈣鈦礦、多晶、晶界
solar cell, perovskite, scanning tunneling spectroscopy (STS), band bending, scanning tunneling microscopy (STM), grain boundary (GB)
統計
Statistics
本論文已被瀏覽 5674 次,被下載 177
The thesis/dissertation has been browsed 5674 times, has been downloaded 177 times.
中文摘要
鈣鈦礦太陽能電池自2009年發展至今,效能快速提升,達到至少17.9%的轉換效率,因其製作簡單能降低成本,可望成為取代矽太陽能電池的新穎材料。多晶太陽能電池晶界的能帶彎曲特性對於光生載子的分離非常重要,能提升太陽能電池的效能,而鈣鈦礦鄰近晶界的能帶結構未有直接觀測的研究說明。利用掃描穿隧顯微鏡,可以同時量測到樣品形貌的高度及其所對應的電子特性,具有空間解析度而能針對鈣鈦礦晶粒內部與邊界進行能帶分析。本研究工作觀察到形貌多晶的現象與鄰近晶界的能帶彎曲現象,並對鄰近晶界的載子遷移作出解釋。
Abstract
Perovskite solar cells have rapidly emerged since 2009, with their energy conversion efficiencies boosting over 17.9%. It is possible to replace silicon solar cells with perovskite ones due to their simple device architectures and low cost. The band bending near the grain boundaries (GBs) of polycrystalline (PX) solar cells plays an important role in seperating of photogenerated electron-hole pairs, which can enhance the performance while it has not been investigated. The STM is used for obtaining the topography images and the corresponding local electronic properties, as well as the band structure of grain interiors and grain boundaries. In this work, we found the polycrystalline surface and band bending near GBs; besides, we explained the diffusion of the carriers as well.
目次 Table of Contents
致謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
第一章 緒論 1
1-1 太陽能電池簡介 1
1-2 鈣鈦礦太陽能電池簡介 2
1-2-1 鈣鈦礦材料簡介 2
1-2-2 鈣鈦礦太陽能電池的發展 3
1-2-3 鈣鈦礦太陽能電池的優勢 5
第二章 研究動機 6
第三章 實驗儀器與原理 7
3-1 掃描穿隧顯微鏡(Scanning Tunneling Microscope, STM) 7
3-2 量子穿隧效應(Quantum Tunneling Effect) 8
3-3 掃描穿隧顯微鏡中的穿隧電流(Tunneling Current) 10
3-4 掃描模式 12
3-4-1 定電流模式(Constant Current Mode) 13
3-4-2 定高度模式(Constant Height Mode) 14
3-4-3 電流影像穿隧能譜(Current Image Tunneling Spectroscopy, CITS) 15
3-5 掃描穿隧能譜(Scanning Tunneling Spectroscopy, STS) 16
3-6 掃描穿隧顯微鏡掃描系統 17
3-6-1 掃描器(Scanner) 17
3-6-2 步進器(Stepper) 18
3-6-3 金屬探針(Tip) 18
3-6-4 避震系統 20
3-7 超高真空系統 21
第四章 實驗結果與討論 28
4-1 樣品資訊 28
4-2 實驗結果與討論 30
4-2-1 鈣鈦礦太陽能電池形貌分析 30
4-2-2 鈣鈦礦太陽能電池電性曲線分析 32
4-2-3 鈣鈦礦太陽能電池鄰近晶界能帶分析 36
4-2-4 鈣鈦礦太陽能電池鄰近晶界的空乏區(depletion region) 41
第五章 結論 42
參考文獻 43
參考文獻 References
[1] L. L. Tobin, T. O’Reilly, D. Zerulla, and J. T. Sheridan, Optik - International Journal for Light and Electron Optics 122, 1225 (2011).
[2] D. E. Carlson and C. R. Wronski, Applied Physics Letters 28, 671 (1976).
[3] M. A. Green, (1982).
[4] C. W. Tang, (Google Patents, 1979).
[5] Y. Terao, H. Sasabe, and C. Adachi, Applied Physics Letters 90, 103515 (2007).
[6] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Science 338, 643 (2012).
[7] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).
[8] H.-S. Kim, S. H. Im, and N.-G. Park, The Journal of Physical Chemistry C 118, 5615 (2014).
[9] J.-H. Im, J. Chung, S.-J. Kim, and N.-G. Park, Nanoscale research letters 7, 1 (2012).
[10] M. Edoardo, A. Anna, N. M. K., G. Michael, and D. A. Filippo, The Journal of Physical Chemistry C 117, 13902 (2013).
[11] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, Nanoscale 3, 4088 (2011).
[12] H.-S. Kim et al., Sci. Rep. 2 (2012).
[13] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, Science 342, 341 (2013).
[14] M. Liu, M. B. Johnston, and H. J. Snaith, Nature 501, 395 (2013).
[15] J. H. Heo et al., Nature Photonics 7, 486 (2013).
[16] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, Nano letters 13, 1764 (2013).
[17] J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Gratzel, Nature 499, 316 (2013).
[18] W. A. Laban and L. Etgar, Energy & Environmental Science 6, 3249 (2013).
[19] G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Gratzel, S. Mhaisalkar, and T. C. Sum, Science 342, 344 (2013).
[20] L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, and M. Grätzel, J. Am. Chem. Soc. 134, 17396 (2012).
[21] E. Edri, S. Kirmayer, A. Henning, S. Mukhopadhyay, K. Gartsman, Y. Rosenwaks, G. Hodes, and D. Cahen, Nano Letters 14, 1000 (2014).
[22] L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, and M. Gratzel, J. Am. Chem. Soc. 134, 17396 (2012).
[23] M. A. Green, A. Ho-Baillie, and H. J. Snaith, Nature Photonics 8, 506 (2014).
[24] M. Kawamura, T. Yamada, N. Suyama, A. Yamada, and M. Konagai, Jpn. J. Appl. Phys. 49, 062301 (2010).
[25] P. Gundel, M. C. Schubert, F. D. Heinz, R. Woehl, J. Benick, J. A. Giesecke, D. Suwito, and W. Warta, Nanoscale research letters 6, 1 (2011).
[26] 郭奕玲, 林木欣, and 沈慧君, 近代物理發展中的著名實驗 (凡異, 台灣, 1999).
[27] D. B. Williams and C. B. Carter, The transmission electron microscope (Springer, 1996).
[28] J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, C. Fiori, and E. Lifshin, Scanning electron microscopy and X-ray microanalysis. A text for biologists, materials scientists, and geologists (Plenum Publishing Corporation, 1981).
[29] G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57 (1982).
[30] G. Binnig and H. Rohrer, Surface Science 126, 236 (1983).
[31] G. Binnig and H. Rohrer, IBM Journal of research and development 44, 279 (2000).
[32] F. Besenbacher, Reports on Progress in Physics 59, 1737 (1996).
[33] J. Vickerman and A. Swift, Surface analysis—the principal techniques. Wiley, Chichester (1997).
[34] 謝汎鈞, 林炳宏, and 呂日清, 科儀新知 32, 84 (2011).
[35] 呂登復, 真空實用技術 (國興出版社, 新竹市, 1993).
[36] K. Aktiengesellschaft and H. Limp, US 4847564 A, (11 July, 1989).
[37] Redhead P, US 3743876 A, (3 July, 1973).
[38] J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, and N.-G. Park, Nature nanotechnology 9, 927 (2014).
[39] L. Barnea-Nehoshtan, S. Kirmayer, E. Edri, G. Hodes, and D. Cahen, The Journal of Physical Chemistry Letters 5, 2408 (2014).
[40] Q. Chen, H. Zhou, T.-B. Song, S. Luo, Z. Hong, H.-S. Duan, L. Dou, Y. Liu, and Y. Yang, Nano Letters 14, 4158 (2014).
[41] E. Edri, S. Kirmayer, S. Mukhopadhyay, K. Gartsman, G. Hodes, and D. Cahen, Nature Communications 5 (2014).
[42] R. Feenstra, Physical Review B 50, 4561 (1994).
[43] Q. Chen, H. Zhou, T. B. Song, S. Luo, Z. Hong, H. S. Duan, L. Dou, Y. Liu, and Y. Yang, Nano Lett 14, 4158 (2014).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code