Responsive image
博碩士論文 etd-0525117-111326 詳細資訊
Title page for etd-0525117-111326
論文名稱
Title
巨量多天線系統下行通道估測實現
Implementation of Downlink Channel Estimation in Massive MIMO Systems
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
78
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-06-20
繳交日期
Date of Submission
2017-06-25
關鍵字
Keywords
位元錯誤率、LTE、巨量多天線系統、通道估測、下鏈系統
Downlink system, Channel estimation, Massive MIMO system, LTE, Bit error rate
統計
Statistics
本論文已被瀏覽 5692 次,被下載 64
The thesis/dissertation has been browsed 5692 times, has been downloaded 64 times.
中文摘要
第四代行動通訊長期演進技術(Long Term Evolution, LTE)為近年來無線通訊發展的高速無線通訊標準,我們利用國家儀器公司的硬體建立巨量多天線系統(Massive Multiple Input Multiple Output System, Massive MIMO System)硬體 設備,以LTE為主要架構,建立起基地台 (Base Station, BS) 與使用者端 (User Equipment, UE) 能即時運算,並包含有上行鏈(Uplink, UL)與下行鏈(Downlink, DL)系統。
本論文,將在下行鏈系統下,討論三種不同通道估測器,其估測器分別為:最小平方法(Least Squares, LS)、比例最小平方法(Scaled Least Squares, SLS)與最小均方誤差法(Minimum Mean-Square-Error, MMSE),並探討其理論跟現實情況中的妥協,最後再將不同的通道估測器透過國家儀器開發的圖形化界面程式LABView實現到硬體上。我們先以部分模擬,觀察不同通道估測器的均方誤差(Mean Square Error, MSE);之後再以用巨量多天線系統來進行,實際以基地台端傳送資料並用使用者端接收資料。
最後在接收端,探討不同的通道估測器,設定不同的傳送功率、傳送天線數與傳送距離,去比較不同估測器之間的位元錯誤率 (Bit Error Rate, BER)。因為實際上我們無法拿到真實的通道資訊,所以我們主要以LS所估測得到的通道去替代真實通道,由模擬與實際接收的結果,可以發現我們不同通道估測器模擬得到的MSE結果與真實接收後的位元錯誤率,與理論差異很大的主要原因為應用LS估測器的結果而讓我們在硬體實現上並未有理論中的效能出現。
Abstract
The 4th generation (4G) mobile communication, long term evolution (LTE), has become high speed wireless communication standard for wireless communication in recent years. We use National Instrument (NI) hardware to build up massive multiple input multiple output system (Massive MIMO system) and mainly based on LTE structure with base station (BS) and user equipment (UE), which can do real-time computation, including uplink (UL) and downlink (DL) systems.
In this thesis, we study on 3 types of different channel estimation in downlink system: least squares (LS), scaled least squares (SLS) and minimum mean-square-error (MMSE), and discuss the tradeoff between theory and the reality. Finally, we implement different channel estimators on hardware through LABView, which developed by NI. We take partial simulation to observe the mean-square-errors (MSEs) for our different channel estimators, then we use massive MIMO system to send real data through wireless environment from BS to UE to received data.
We will study on the results with different estimators with different transmit power, transmit antennas number and distance to compare its bit error rate (BER). From the results, because we will not get the real channel and we use LS estimated channel instead, the performance in theory does not appears here for MSE and BER.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖次 vii
表次 ix
第一章 導論 1
1.1 LTE背景介紹 2
1.2 研究動機 3
1.3論文架構概述 4
第二章 LTE 5
2.1 正交分頻多工系統架構 5
2.2 LTE標準 10
2.2.1 時頻訊框架構 10
2.2.2訊號傳送 13
2.2.2.1 上鏈訊號 13
2.2.2.2 下鏈訊號 14
第三章 巨量多輸入多輸出系統 16
3.1 平台架構 16
3.1.1 硬體介紹 19
3.1.2 基地台架構 20
3.1.3 使用者架構 21
3.2 平台運作 21
第四章 下鏈通道估測演算法 23
4.1 訊號模型 23
4.2 通道估測 24
4.2.1 最小平方估測器 24
4.2.2 比例最小平方估測器 24
4.2.3 最小均方誤差估測器 26
第五章 通道估測實現 28
5.1 使用者端硬體 28
5.1.1 硬體演算法 28
5.1.2 LS運作 29
5.2 演算法實現 31
5.2.1 SLS實現 31
5.2.2 MMSE 實現 35
5.2.3 通道估測器選擇 37
第六章 模擬與實際效能 40
6.1 估測器之均方誤差 40
6.2 位元錯誤率 42
第七章 結論 52
參考文獻 53
中英對照表 58
縮寫對照表 65
參考文獻 References
[1] K. Minoru and S. Masaaki, “Second generation mobile radio telephone system in Japan,” IEEE Commun. Mag., vol. 24, no. 2, pp. 16–21, Feb. 1986.
[2] G. Brasche and B. Walke, “Concept, services, and protocols of the new GSM phase 2+ general packet radio service,” IEEE Commun. Mag., vol. 35, no. 8, pp. 94–104, Aug. 1997.
[3] C. Drane, M. Macnaughtan, and C. Scott, “Positioning GSM telephones,” IEEE Commun. Mag., vol. 36, no. 4, pp. 46–54, Apr. 1998.
[4] K. I. Kim, “CDMA cellular engineering issues,” IEEE Trans. Veh. Technol., vol. 42, no. 3, pp. 345–350, Aug. 1993.
[5] J. S. Lee and M. E. Miller, “Analysis of peak-to-average power ratio for IS-95 and third generation CDMA forward link waveforms,” IEEE Trans. Veh. Technol., vol. 50, issue 4, pp. 1004–1013, July 2001.
[6] V. K. Grag, IS-95 CDMA and CDMA2000: Cellular/PCS Systems Implementation, 1st ed. London, Pearson, 2000.
[7] A. J. Viterbi, CDMA: Principle of Spread Spectrum Communication. Addison Wesley, 1995.
[8] W. C. Y. Lee, “Overview of cellular CDMA,” IEEE Trans. Veh. Technol., vol. 40, no. 2, pp. 291–302, May 1991.
[9] H. Honkasalo, K. Pehkonen, M. T. Niemi, and A. T. Leino, “WCDMA and WLAN for 3G and beyond,” IEEE Trans. Wireless Commun., vol. 9, no. 2, pp. 14–18, Apr. 2002.


[10] C. P. Li, S. H. Wang, and K. H. Tsai, “A low complexity transmitter architecture and its application to PAPR reduction in SFBC MIMO-OFDM systems,”in Proc. IEEE Int. Conf. Commun., 2010, pp. 1–5.
[11] T.-T. Lin and C.-P. Li, “A blind interference-blocking RAKE receiver for CDMA communications systems,” IEICE Transactions on Communications, vol. E88-B, no. 5, pp.2073-2080, May 2005.
[12] A. Ghosh, R. Ratasuk, B. Mondal, N. Mangalvedhe, and T. Thomas, “LTE-advanced: next generation wireless broadband technology,” IEEE Wireless Commun., vol. 17, issue 3, pp. 10–22, June 2010.
[13] J. Gozalvez, “South Korea launches LTE-advanced,” IEEE Veh. Technol. Mag., vol. 9, no. 1, pp. 10–27, Mar. 2014.
[14] L. J. Cimini, “Analysis and simulation of a mobile radio channel using orthogonal frequency division multiplexing,” IEEE Trans. Commun., vol. 33, no. 7, pp. 665–675, July 1985.
[15] W. Y. Zou and Y. Wu, “COFDM: an overview,” IEEE Trans. Broadcast., vol. 41, no. 1, pp. 1–8, Mar. 1995.
[16] Y. Wu and W. Y. Zou, “Orthogonal frequency division multiplexing: a multi-carrier modulation scheme,” IEEE Trans. Consum. Electron., vol. 41, no. 3, pp. 392–399, Aug. 1995.
[17] H. C. Wu, “Analysis and characterization of intercarrier and interblock interferences for wireless mobile OFDM systems,” IEEE Trans. Broadcast., vol. 52, no. 2, pp. 203–210, June 2006.
[18] S.-H. Wang, K.-C. Lee, and C.-P. Li, “A low-complexity architecture for PAPR reduction in OFDM systems with near-optimal performance,” IEEE Trans. on Vehicular Technology, vol. 65, no. 1, pp. 169-179, Jan. 2016.
[19] J.-W. Pu, T.-Y. Wang, S.-H. Li, C.-P. Li, and H.-J. Li, “Performance analysis of relay selection in two-way relay networks with channel estimation errors,” IEEE Trans. on Broadcasting, vol. 61, no. 3, pp. 482-493, Sept. 2015.
[20] W.-J. Huang, W.-W. Hu, C.-P. Li, and J.-C. Chen, “Novel metric-based PAPR reduction schemes for MC-CDMA systems,” IEEE Trans. on Vehicular Technology, vol. 64, no. 9, pp. 3982-3989, Sept. 2015.
[21] Y.-S. Yang, W.-C. Huang, C.-P. Li, H.-J. Li, and G. Stuber, “A low-complexity transceiver structure for OFDM-based coordinated multi-point systems,” IEEE Trans. on Communications, vol. 63, no. 7, pp. 2658-2670, July 2015.
[22] S.-H. Wang, C.-P. Li, K.-C. Lee, and H.-J. Su, “A novel low-complexity precoded OFDM system with reduced PAPR,” IEEE Trans. on Signal Processing, vol. 63, no. 6, pp. 1366-1376, Mar. 2015.
[23] K.-C. Lee, S.-H. Wang, C.-P. Li, H.-H. Chang, and H.-J. Li, “Adaptive resource allocation algorithm based on cross-entropy method for OFDMA systems,” IEEE Trans. on Broadcasting, vol. 60, no. 3, pp. 524-531, Sept. 2014.
[24] W.-C. Huang, X.-Z. He, C.-P. Li, and H.-J. Li, “On pilot design for channel estimation and MUI reduction in uplink OFDMA systems,” IEEE WCNC2009, April 2009.
[25] W.-C. Huang, C.-H. Pan, C.-P. Li, and H.-J. Li, “Subspace-based semiblind channel estimation in uplink OFDMA systems,” IEEE Trans. Broadcast., vol. 56, no. 1, pp. 58–65, Mar. 2010.
[26] W. C. Huang, Y. S. Yang, and C. P. Li, “A new pilot architecture for sub-band uplink OFDMA systems,” IEEE Trans. Broadcast., vol. 59, no. 3, pp. 461-470, Sep. 2013.

[27] W.-C. Huang, C.-P. Li, and H.-J. Li, “Optimal pilot sequence design for channel estimation in CDD-OFDM systems,” IEEE Trans. on Wireless Communications, vol. 11, no. 11, pp. 4006-4016, Nov. 2012.
[28] J.-C. Chen, M.-H. Chiu, Y.-S. Yang, and C.-P. Li, “A suboptimal tone reservation algorithm based on cross-entropy method for PAPR reduction in OFDM systems,” IEEE Trans. on Broadcasting, vol. 57, no. 3, pp. 752-756, Sept. 2011.
[29] C.-P. Li and W.-W. Hu, “Super-imposed training scheme for timing and frequency synchronization in OFDM systems,” IEEE Trans. on Broadcasting, vol. 53, issue 2, pp. 574-583, June 2007.
[30] W.-C. Huang, C.-P. Li, and H.-J. Li, “On the power allocation and system capacity of OFDM systems using superimposed training schemes,” IEEE Trans. on Vehicular Technology, vol. 58, no. 4, pp. 1731-1740, May 2009.
[31] W.-C. Huang, C.-H. Pan, C.-P. Li, and H.-J. Li, “Subspace-based semi-blind channel estimation in uplink OFDMA systems,” IEEE Trnas. on Broadcasting, vol. 56, no. 1, pp. 58-65, Mar. 2010.
[32] WiMAX Forum, Mobile WiMAX-Part I: A technical overview and performance evaluation, White Paper, August 2006.
[33] ETSI, Digital video broadcasting (DVB): Framing structure, channel coding and modulation for digital terrestrial television. ETS EN 300 744 v. 1.1.2.
[34] T. Pham, T. L. Ngoc, G. Woodward, and P. A. Martin, “Channel estimation and data detection for insufficient cyclic prefix MIMO-OFDM,” IEEE Trans. on Vehicular Technology, vol. 66, no. 6, pp. 4756-4768, June 2017.
[35] A. Liavas, P. Regalia, and J.-P. Delmas, “Blind channel approximation: Effective channel order determination,” IEEE Trans. Signal Process., vol. 47, no. 12, pp. 3336–3344, Dec. 1999.
[36] B. Yang, K. Letaief, R. Cheng, and Z. Cao, “Channel estimation for OFDM transmission in multipath fading channels based on parametric channel modeling,” IEEE Trans. Commun., vol. 49, no. 3, pp. 467–479, Mar. 2001.
[37] K. Ranta-aho and Z. Shen, “User equipment positioning,” in LTE—The UMTS Long Term Evolution, S. Sesia, I. Toufik, and M. Baker, Eds. New York, NY, USA: Wiley, 2009, pp. 423–436
[38] Y. Liu, Z. Tan, H. Hu, L. Cimini, and G. Li, “Channel estimation for OFDM,” IEEE Commun. Surveys Tuts., vol. 16, no. 4, pp. 1891–1908, 4th Quart. 2014.
[39] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. Englewood Cliffs, NJ: Prentice-Hall, 1993.
[40] Y. C. Eldar, A. Ben-Tal, and A. Nemirovski, “Linear minimax regret estimation of deterministic parameters with bounded data uncertainties,” IEEE Trans. Signal Process., vol. 52, pp. 2177–2188, Aug. 2004.
[41] M. Biguesh and A. B. Gershman, “Training-based MIMO channel estimation: a study of estimator tradeoffs and optimal training signals,” IEEE Trans. Signal Process., vol. 54, no. 3, pp. 884–893, Mar. 2006.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code