Responsive image
博碩士論文 etd-0526113-101627 詳細資訊
Title page for etd-0526113-101627
論文名稱
Title
離子性發光體之群聚增強發光
Ionic Luminogen with Aggregation-Enhanced Emission
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
102
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-16
繳交日期
Date of Submission
2013-06-26
關鍵字
Keywords
抑制分子轉動、自組裝超分子、聚集發光增益
Aggregation-enhanced emission, supramolecular assembly, long chain orientation order, restricted intramolecular rotation
統計
Statistics
本論文已被瀏覽 5795 次,被下載 140
The thesis/dissertation has been browsed 5795 times, has been downloaded 140 times.
中文摘要
非共平面芳香族發光體可藉由抑制分子內轉動(restricted intramolecular rotation, RIR)進而顯現聚集發光增強效應(aggregation-enhanced emission, AEE)。增強RIR現象之方式,除利用巨大基團限制分子轉動外,離子作用力亦為有效方法。本實驗利用長鏈離子材料提升RIR作用力,進而探討AEE發光性質。利用此長鏈作用力,將一微弱發光體十二烷基苯磺酸 (DBSA)與鹼性基團哌嗪(PZ) 與聚乙烯亞胺(PEI))於離子作用力下,觀察螢光發光之增強現象。另為印證長鏈作用力係提升AEE性質之論點,進一步將十二烷胺(DA)長鏈小分子與聯苯二磺酸鈉(BPS)、聚苯乙烯磺酸鈉)(PSS),以離子作用力誘導形成規則性結構,使之展現AEE之發光特性。而在PSS(DA)1此離子系統內,觀察到出現出聚集增強激發二聚物發光(Aggregation enhanced excimer emission)之特殊現象。綜上,於DBSA(PZ)x、 DBSA(PEI)x、 BPS(DA)x 與PSS(DA)x等錯合物系統內,皆可利用長鏈自組裝行為,形成層狀超分子結構,故長鏈分子自組裝層狀結構與其發光行為係本研究之探討重點。
Abstract
Restricted intramolecular rotation (RIR) of the non-coplanar aromatic fluorophores has been proven in several instances as the operative mechanism leading to the aggregation-enhanced emission (AEE) property. Besides using the bulky substituent as structural moiety of AEE-active materials, ionic bond interaction is also considered to be effective in reinforcing RIR. In this study, ionic ammonium sulfonate bond was used to introduce long chain orientation order and thus to impose effective RIR to generate emission enhancement on AEE-active organic fluorophores. With this aspect, a surfactant (surf) molecule of weakly-luminescent dodecylbenzenesulfonic acid (DBSA) was used to complex to different amines of varied structures and certain diamines (piperazine (PZ) and poly(ethyleneimine (PEI)) with right geometry to generate orientated dodecyl chains in the ionic products result in the further emission intensifications of the complex systems. Additionally, long-chain dodecylamine (DA) was used to react with weakly-fluorescent biphenyldisulfonate (BPS) and poly(styrene sulfonate) (PSS) to generate AEE-active materials with required orientation order and strong fluorescence due to the active RIR effect. An interesting aggregation-enhanced excimer emission (AEEE) was observed specifically for PSS(DA)1 complex system. Several complex systems (such as DBSA(PZ)x, DBSA(PEI)X, BPS(DA)x and PSS(DA)x ) were found to self-assemble into well-ordered supramolecular lamellar structures with the preferable orientation orders among their long aliphatic chains. RIR in relation to orientation order is therefore the main focus of this research.
目次 Table of Contents
Outline of Contents………………………………………………………….…………i
List of Figure................................................................................................................ iii
List of Scheme.............................................................................................................vii
List of Table............................................................................................................... viii
English Abstract........................................................................................................…ix
Chinese Abstract…………………………………………............................................ x
Chapter 1. Background................................................................................................1
1-1. Fluorescence and Phosphorescence…………………………………............1
1-2. Formation Mechanism of Excimer and Aggregation.....................................3
1-3. Aggregation Induced Emission Phenomenon(AIE).......................................6
1-4. Restriction of Intramolecular Rotation Response to Temperature.................8
1-5. Fluorescence Decay Dynamics......................................................................9
1-6. Aggregation-Enhanced Excimer Emission (AEEE).....................................11
1-7. Aggregation-Enhanced Emissions of Intramolecular Excimer Emission....12
Chapter 2. Experimental Sections............................................................................14
2-1. Materials.........................................................................................................14
2-2. Sample Preparation and Experimental Conditions.........................................18
2-3. Instrumentations..............................................................................................19
Chapter 3. Enhanced Luminescence by Restricted Intramolecular Rotation of Dodecylbenzenesulfonic Acid....................................................................................23
3-1. Introduction and Research Motivation............................................................23
3-2. Fluorescence of DBSA ...................................................................................26
3-3. Film Emission in Relationship to Linear/Heterocyclic Amines......................32
3-4. Enhanced Emission of DBSA by Complexation to PEI.................................39
3-5. The Dissociation of the Ionic Bond by Acidic TFA........................................44
3-6. Enhanced Thermal Stability by PEI Complexation…………........…………45
3-7. Relative Degree of Restricted MR on Pure DBSA and DBSA(PEI)x.............46
3-8. Time-Resolved Fluorescence Spectra.............................................................49
3-9. The Supramolecular Honeycomb Structure of DBSA(PEI)1.7 Complex........51
3-10. Conclusion....................................................................................................54
Chapter 4. Enhanced Emission by the Orientation Order of 1-dodecylamine.....55
4-1. Introduction and Research Motivation............................................................55
4-1-1. Intramolecular Excimer Formation of π-π Stacking....................................56
4-2. Fluorescence of Biphenyl Sulfonate (BPS) and Polystyrene Sulfonate
(PSS).................................................................................................................59
4-3. Fluorescence of BPS(DA)x and PSS(DA)x....................................................62
4-4. Orientation Order structure in Relation to the AEEE-Effect in Solid State....67
4-5. Time-Resolved Fluorescence Spectra.............................................................72
4-6. Conclusion......................................................................................................75
Chapter 5. Summary..................................................................................................76
References....................................................................................................................77
Supporting information................................................................................................86
參考文獻 References
References
(1) M. Grätzel and J. K. Thomas, in Modern Fluorescence Spectroscopy, edited by E. L. Wehry (Plenum, New York, 1976), Vol. 2, p. 169.
(2) Th. Förster and K. Kasper, Z. Phys. Chem. (Munich) 1954, 1, 275.
(3) J. B. Birks, Photophysics of Aromatic Molecules, Wiley, London, 1970.
(4) J. Malkin, Photophysical and Photochemical Properties of Aromatic Compounds, CRC, Boca Raton, 1992.
(5) X .C. Li and S. C. Moratti, in Photonic Polymer Systems, Marcel Dekker, New York, 1998, ch. 10.
(6) R. Shenhar, T. B. Norten and V. M. Rottelo, Polymer-Mediated Nanoparticle Assembly: Structural Control and Applications, Adv. Mater. 2005, 17, 657–669.
(7) J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu and B. Z. Tang, Aggregation-Induced Emission of 1-Methyl-1,2,3,4,5-Pentaphenylsilole, Chem. Commun. 2001, 1740–1741.
(8) Y. Hong, J.W.Y. Lam and B. Z. Tang, Aggregation-Induced Emission, Chem. Soc. Rev. 2011, 40, 536–5388.
(9) A.J. Qin, J.W.Y. Lam and B. Z. Tang, Luminogenic Polymers with Aggregation-Induced Emission Characteristics, Prog. Polym. Sci. 2012, 37, 182–209.
(10) J. Z. Liu, J. W. Y. Lam and B. Z. Tang, Aggregation-induced Emission of Silole
Molecules and Polymers : Fundamental and Applications, J. Inorg. Organomet.
Polym. 2009, 19, 249–285.
(11) Y. Hong, J. W. Y. Lam and B. Z. Tang, Aggregation-Induced Emission: Phenomenon, Mechanism and Applications, Chem. Commun. 2009, 4332–4353.
(12) J. Chen, C. C. W. Law, J. W. Y. Lam, Y. P. Dong, S. M. F. Lo, I. D. Williams, D. Zhu and B. Z. Tang, Synthesis, Light Emission, Nanoaggregation and Restricted Intramolecular Rotation of 1,1-Substituted 2,3,4,5-Tetraphenylsiloles, Chem. Mater. 2003, 15, 1535–1546.
(13) Y. Ren, J.W.Y. Lam, Y. Q. Dong, B. Z. Tang and K. S. Wong, Enhanced Emission Efficiency and Excited State Lifetime Due to Restricted Intramolecular Motion in Silole Aggregates, J. Phys. Chem. B 2005, 109, 1135–1140.
(14) Z. J. Zhao, S. M. Chen, J. W. Y. Lam, Z. M Wang, P. Lu, F. Mahtab, H. H. Y. Sung, I. D. Williams, Y .G. Ma, H. S. Kwok and B. Z. Tang, Pyrene-Substituted Ethenes: Aggregation-Enhanced Excimer Emission, J. Mater. Chem. 2011, 21, 7210–7216.
(15) A. J. Qin, C. K. W. Jim, Y. H. Tang, J. W. Y. Lam, J.Z. Liu, Faisal Mahtab, P. Gao and B. Z. Tang, Aggregation-Enhanced Emissions of Intramolecular Excimers in Disubstituted Polyacetylenes, J. Phys. Chem. B 2008, 112, 9281–9288.
(16) B. Z. Tang, X. Zhan, G. Yu, P. P. S. Lee, Y. Liu and D. Zhu, Efficient Blue Emission from Siloles, J. Mater. Chem.2001, 11, 2974–2978.
(17) R. H. Chien, C. T. Lai and J. L. Hong, Enhanced Aggregation Emission of Vinyl Polymer Containing Tetraphenylthiophene Pendant Group, J. Phys. Chem. C 2011, 115, 5958–5965.
(18) J. Liu, J. W. Y. Lam and B. Z. Tang, Acetylenic Polymers: Syntheses, Structures, and Functions, Chem. Rev. 2009, 109, 5799–5867.
(19) S. W. Thomas III , G. D. Joly and T. M. Swager, Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers, Chem.Rev. 2007, 107, 1339–1386.
(20) H. Li, Z. Chi, B. Xu, X. Zhang, X. Li, S. Liu, Y. Zhang and J. Xu, Aggregation-Induced Emission Enhancement Compounds Containing Triphenylamine-Anthrylenevinylene and Tetraphenylethene Moieties, J. Mater. Chem. 2011, 21, 3760–3767.
(21) R. H. Chien, C. T. Lai and J. L. Hong, Restricted Molecular Rotation and Enhanced Emission in Polymer Blends of Poly(fluorene- alt -naphthol) and Poly(vinyl pyrrolidone) with Mutual Hydrogen-Bond Interactions, J. Phys. Chem. C 2011, 115, 20732–20739.
(22) S. T. Li, Y. C. Lin, S. W. Kuo, W. T. Chuang and J. L. Hong, Aggregation Induced Emission Enhancement in Relation to the Secondary Structures of Poly( g -benzyl- L -glutamate) Containing a Fuorescent Tetraphenylthiophene Moiety, Polym. Chem. 2012, 43, 2393–2402.
(23) Z. Li, Y. Dong, B. Mi, Y. Tang, M. Häussler, H. Tong, Y. Dong, J. W. Y. Lam , Y. Ren, H. H. Y. Sung, K. S. Wong, P. Gao, I. D. Williams, H. S. Kwok and B. Z. Tang, Structural Control of the Photoluminescence of Silole Regioisomers and Their Utility as Sensitive Regiodiscriminating Chemosensors and Efficient Electroluminescent Materials, J. Phys. Chem. B 2005, 109, 10061–10066.
(24) K. Kokado and Y. Chujo, Emission via Aggregation of Alternating Polymers with o-Carborane and p-Phenylene−Ethynylene, Macromolecules 2009, 42, 1418–1420.
(25) Y. Ren, Y. Q. Dong, J. W. Y. Lam, B. Z. Tang and K. S. Wong, Studies on the Aggregation-Enduced Emission of Silole Film and Crystal by Time-Resolved, Chem. Phys. Lett. 2005, 402, 468–473.
(26) A. Qin, J. W. Y. Lam, L. Tang, C. K. W. Jim, H. Zhao, J. Sun and B. Z. Tang, Polytriazoles with Aggregation-Induced Emission Characteristics: Synthesis by Click Polymerization and Application as Explosive Chemosensors, Macromolecules 2009, 42, 1421–1424.
(27) J. Liu, Y. Zhong, J. W. Y. Lam, P. Lu, Y. Hong, Y. Yu, Y. Yue, M. Faisal, H. H. Y. Sung, I. D. Williams, K. S. Wong and B. Z. Tang, Hyperbranched Conjugated Polysiloles: Synthesis, Structure, Aggregation-Enhanced Emission, Macromolecules 2010, 43, 4921–4936.
(28) (a) A. Mallick, M. C. Mandal, B. Haldar, A. Chakrabarty and P. Das, N. Chattopadhyay, Surfactant-Induced Modulation of Fluorosensor Activity:  A Simple Way to Maximize the Sensor Efficiency, J. Am. Chem. Soc. 2006, 128, 3126–3127. (b) L. Brinchi, R. Germani, L. Goracci, G. Savelli and C. A. Bunton, Surfactant-Induced Modulation of Fluorosensor Activity:  A Simple Way to Maximize the Sensor Efficiency, Langmuir 2002, 18, 7821–7825.
(29) (a) S. K. Ghosh, A. Pal, S. Kundu, M. Mandal, S. Nath, and T. Pal, Emission Behavior of 1-Methylaminopyrene in Aqueous Solution of Anionic Surfactants, Langmuir 2004, 20, 5209–5213. (b) Y. Nakahara, T. Kida, Y. Nakatsuji, and M. Akashi, New Fluorescence Method for the Determination of the Critical Micelle Concentration by Photosensitive Monoazacryptand Derivatives, Langmuir 2005, 21, 6688–6695. (c) A. Mohr , P. Talbiersky, H. G. Korth, R. Sustmann, R. Boese, D. Bläser, and H. Rhage, New Pyrene-Based Fluorescent Probe for the Determination of Critical Micelle Concentrations, J. Phys. Chem. B 2007, 111, 12985–12992.
(30) (a) S. S. Atik and L. A. Singer, Spectroscopic Studies on Small Aggregates of Amphipathic Molecules in Aqueous Solution, J. Am. Chem. Soc. 1979, 101, 6759–6761. (b) T. Sakai, Y. Kaneko and K. Taujii, Premicellar Aggregation of Fatty Acid N-Methylethanolamides in Aqueous Solutions, Langmuir 2006, 22, 2039–2044.
(31) C. L. Yu, J. Zhai, X. F. Gao, M. X. Wan, L. Jiang, T. J. Li, and Z. S. Li, Water-Assisted Fabrication of Polyaniline Honeycomb Structure Film, J. Phys. Chem. B 2004, 108, 4586–4589.
(32) M. Antonietti, J. Conrad and A. Thunemann, Polyelectrolyte-Surfactant Complexes: A New Type of Solid, Mesomorphous Material, Macromolecules 1994, 27, 6007–6011.
(33) O. Ikkala, J. Ruokolainen, G. T. Brinke, M. Torkkeli and R. Serimaa, Mesomorphic State of Poly(vinylpyridine)-Dodecylbenzenesulfonic Acid Complexes in Bulk and in Xylene Solution, Macromolecules 1995, 28, 7088–7094.
(34) J. Ruokolainen, M. Torkkeli, R. Serimaa, S. Vahvaselka, M. Saariaho, G.t. Brinke and O. Ikkala, Critical Interaction Strength for Surfactant-Induced Mesomorphic Structures in Polymer−Surfactant Systems, Macromolecules 1996, 29, 6621–6628.
(35) J. Ruokolainen, M. Torkkeli, R. Serimaa, E. Komanschek, G. T. Brinke and O. Ikkala, Order−Disorder Transition in Comblike Block Copolymers Obtained by Hydrogen Bonding between Homopolymers and End-Functionalized Oligomers:  Poly(4-vinylpyridine)−Pentadecylphenol, Macromolecules 1997, 30, 2002–2007.
(36) J. Ruokolainen, J. Tanner, O. Ikkala, G. T. Brinke and E. L. Thomas, Direct Imaging of Self-Organized Comb Copolymer-like Systems Obtained by Hydrogen Bonding:  Poly(4-vinylpyridine)−4-Nonadecylphenol, Macromolecules 1998, 31, 3532–3536.
(37) H. L. Chen and M. S. Hsiao, Self-Assembled Mesomorphic Complexes of Branched Poly(ethylenimine) and Dodecylbenzenesulfonic Acid, Macromolecules 1999, 32, 2967–2973.
(38) M. S. Hsiao, H. L. Chen and D. J. Liaw, A Mesomorphic Blend Based on the Solid-State Complexes of Polymers with Surfactants, Macromolecules 2000, 33, 221–224.
(39) C. Yu, J. Zhai, Z. Li, M. Wan, M. Gao and L. Jiang, Water-Assisted Self-Assembly of Polyaniline/Fe3O4 Composite Honeycomb Structures Film, Thin Solid Films 2008, 516, 5107–5110.
(40) H. Sun, H. L. Li, W. F. Bu, M. Xu and L.X. Wu, Self-Organized Microporous Structures Based on Surfactant-Encapsulated Polyoxometalate Complexes, J. Phys. Chem. B 2006, 110, 24847–24854.
(41) C. A. Chou, R. H. Chien, C. T. Lai and J. L. Hong, Complexation of Bulky Camphorsulfonic Acid to Enhance Emission of Organic and Polymeric Fuorophores with Inherent Quinoline Moiety, Chem. Phys. Lett. 2010, 501, 80–86.
(42) Bunz, U. H. F., Breath Figures as a Dynamic Templating Method for Polymers and Nanomaterials, Adv. Mater. 2006, 18, 973–989.
(43) L. Bokobza, B. Jasse, L. Monnerie, Intramolecular Excimer Formation in Polystyrene Model Moleculars, European Polymer Journal, 1977, 13, 921–924.
(44) L. F. Lindoy and I. M. Atkinson, Self-Assembly in Supramolecular Systems, RSC, Cambridge, 2000.
(45) A. L. Ringer, M. O. Sinnokrot, R. P. Lively and C. D. Sherrill, The Effect of Multiple Substituents on Sandwich and T-Shaped π–π Interactions, Chem. Eur. J. 2006, 12, 3821–3828.
(46) S. Y. Moon, N. J. Youn, S. M. Park and S. K. Chang, Diametrically Disubstituted Cyclam Derivative Having Hg2+-Selective Fluoroionophoric Behaviors, J. Org. Chem. 2005, 70, 2394–2397.
(47) M. T. Albelda, E. GarcQa-Espa Ça, L. Gil, J. C. Lima, C. Lodeiro, J. Seixas de Melo, A. J. Parola, F. Pina and C. Soriano, Intramolecular Excimer Formation in a Tripodal Polyamine Receptor Containing Three Naphthalene Fluorophores, J. Phys. Chem. B 2003, 107, 6573–6578.
(48) X. Xiao, W. Xu, D. Zhang, H. Xu, L. Liu, D. Zhu, Novel Redox-Fluorescence Switch Based on a Triad Containing Tetrathiafulvalene and Pyrene Units with Tunable Monomer and Excimer Emissions, New J. Chem. 2005, 29, 1291–1294.,
(49) H. Yuasa, N. Miyagawa, M. Nakatani, M. Izumi and H. Hashimoto, A Tong-Like Fluorescence Sensor for Metal Ions: Perfect Conformational Switch of Hinge Sugar by Pyrene Stacking, Org. Biomol. Chem. 2004, 2, 3548–3556.
(50) J. B. Birks, D. J. Dyson and I. H. Munro, `Excimer' Fluorescence. II. Lifetime Studies of Pyrene Solutions, Proc. R. Soc. London, 1963, 275, 575–588.
(51) A. C. Benniston, A. Harriman, S.L. Howell, C. A. Sams, and Y. G. Zhi, Intramolecular Excimer Formation and Delayed Fluorescence in Sterically Constrained Pyrene Dimers, Chem. Eur. J. 2007, 13, 4665–4674.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code