Responsive image
博碩士論文 etd-0526113-112551 詳細資訊
Title page for etd-0526113-112551
論文名稱
Title
溶膠凝膠法製備氧化物應用於敏化太陽能電池暨介電層材料
Oxides prepared by sol-gel method with application to dye-sensitized solar cells and dielectric materials
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
110
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-05-29
繳交日期
Date of Submission
2013-06-26
關鍵字
Keywords
絕緣層、分散劑、二氧化矽、氧化鋅、二氧化鈦、染料敏化太陽能電池、溶膠凝膠法
Dye Sensitized Solar Cells, insulator layer, TiO2, SiO2, zinc oxide, dispersing agent, sol-gel method
統計
Statistics
本論文已被瀏覽 5759 次,被下載 680
The thesis/dissertation has been browsed 5759 times, has been downloaded 680 times.
中文摘要
本文第二章及第三章是探討染料敏化太陽能電池(DSSCs)中二氧化鈦(TiO2)工作電極之製備技術,主要研究項目為︰(I)以溶膠凝膠法(Sol-Gel)製作多孔性(Porous)二氧化鈦,(II)比較有無添加緻密層(Dense)二氧化鈦,效率之差異,(III)在多孔層上噴灑一層帶有銀(Ag)原子之奈米光觸媒二氧化鈦並探討其特性。比較不同粒徑二氧化鈦粉末,發現由Degussa 生產之20nm 粒徑粉末所做之元件效率可達3.31%;加入緻密層後效率可達3.75%;在泡染料之前先噴灑一層帶銀原子光觸媒可提升元件電流使效率達4.13%。進一步探討其特性研究如何製備多層結構的染料敏化太陽能電池,以及利用自製的電解液來減低元件內部漏電以提昇效率。一般的染料敏化太陽能電池DSSC(Dye-Sensitized Solar Cell)的構造為:FTO/ Dense layer/ TiO2 Porous layer with Dye/ electrolyte/ Pt electrode. 在本實驗中的染料採用常見的商業化釕金屬染料(Ruthenium N719),以及本實驗室自行合成的香豆素衍生物染料。在一般的DSSC 元件中,Porous 常採用單層結構及單一顆粒大小的TiO2 做為吸光區域,而本研究在於製備多層結構的Porous layer 以增進吸光效率,並採用不同顆粒大小的TiO2 以促使光線的繞射來增加染料的光電轉換效率。相較於單層結構的DSSC,我們已經初步成功將雙層結構的DSSC 光電轉換效率提昇了28%。本實驗以FTO(SnO2:F)導電玻璃為基版,因為FTO 在高溫煅燒之後的穩定性較ITO 為佳,其高溫下電阻上昇率低且耐電解液的侵蝕。本實驗以吸光效率好的釕金屬N719 為染料,使其吸附在Porous layer 上的TiO2,釕金屬染料吸收陽光後形成激發態,電子會經由TiO2 傳遞至FTO,但也會傳遞至電解液形成氧化還原反應而降低光電轉換效率。第四章實驗是利用四乙矽酸(TEOS)以溶膠凝膠法(sol-gel)製備二氧化矽(SiO2)作為絕緣層的介電材料,成膜方法是用旋轉塗佈法(spin-coating)。改變其添加TEOS 的量,藉以改變成膜的條件,並找出容易成膜最適合的濃度,然後嘗試加入有機分散劑(Octyl PhenolEthoxylate),其目的是使溶液裡的分子能夠均勻地分散,並且在成膜之後改善其粗糙度使之更加平整,以AFM 量測RMS 值,其測量結果皆落在1nm 以下,此結果顯示出加入分散劑能有效的改善粗糙度。之後,我們以這些材料做成MIM結構,發現在加入采酮後,因材料均勻分散,材料與材料之間變得更加緻密,且黏度提升,而膜厚也隨之增加,量測其漏電流比未加入時的還要小10 倍。此後將其薄膜應用於TFT 元件的絕緣層之中,我們的半導體層是使用熱蒸鍍法來蒸鍍Pentacene,因絕緣層與半導體層之間的介面會改變Pentacene 的排列,所以我們以O2 Plasma 來改善其介面,讓分子能夠整齊排列,藉此影響載子移動率,並獲得其元件特性。第五章的研究是使用溶膠凝膠法在基板上製備氧化鋅薄膜,利用旋轉塗佈的方式,將凝膠塗佈在基板上,再經由不同的熱處理以形成不同結晶性的氧化鋅薄膜。本研究藉由改變溶膠溶液的濃度、加入分散劑的有無、熱處理溫度的改變等製程條件,來探討溶膠凝膠法製備的氧化鋅薄膜結構之特性、電性的分析與光學性質之變化等。經由實驗發現,當溶膠濃度低於某濃度時,氧化鋅薄膜的成膜性會變差;而薄膜的成長厚度亦會隨著溶膠的濃度增加而變厚;而適當的添加分散劑對氧化鋅薄膜之表面形態也會有所不同。另外,在不同的熱處理溫度下,薄膜的結晶性、表面粗糙度及光電特性也會有所改變。再經由添加醋酸鋅於溶膠溶液中來摻雜氮離子於氧化鋅薄膜之中,經由實驗發現,有經過摻雜氮離子的氧化鋅薄膜在電性方面確實優於未經過摻雜的氧化鋅薄膜許多。
Abstract
Chapter 2 and 3 of this article investigates the preparation technique of titanium oxide (TiO2) work electrode of Dye Sensitized Solar Cells (DSSCs). The main research items are: (I) Using Sol-Gel method to prepare porous TiO2, (II) Comparing the difference in efficiency of TiO2 with or without adding dense layer, (III) On the porous layer, nano photo catalyst of TiO2 carrying Ag atom is sprayed and its characteristic is investigated. After comparing different particle diameter of TiO2 powder, it was found that device made up of 20 nm diameter particle powder as manufactured by Degussa can have efficiency as high as 3.31%; however, after adding the dense layer, the efficiency can be as high as 3.75%; before immersing in the dye, photo catalyst carrying a layer of Ag atoms is sprayed first to enhance the device current and its efficiency to as high as 4.13%. Moreover, its characteristic is studied to see how to prepare multi-layer structural Dye Sensitized Solar Cells, in the mean time, self-made electrolytic solution is used to reduce the current leak within the device and to enhance the efficiency. The structure of general Dye Sensitized Solar Cells DSSC is: FTO/ Dense layer/ TiO2 Porous layer with Dye/ electrolyte/ Pt electrode. In this experiment, the dye used is the commonly seen highly commercialized Ruthenium N719, and the coumarin derivative dye as self-synthesized in this lab. In general DSSC device, porous layer usually adopts single layer structural and single particle TiO2 as the photo absorption area. The main objective of this research is to prepare multi-layer structural porous layer to enhance the photo absorption efficiency. In the mean time, TiO2 of different particular size is adopted to create light diffraction and to enhance the photo electric conversion efficiency of the dye. As compared to single layer structural DSSC, the photoelectric conversion efficiency of double layer structural DSSC has been successfully and initially enhanced by 28%. In this experiment, FTO(SnO2:F) conductive glass is used as substrate, which is because that FTO has, after high temperature calcinations, stability better than ITO, and under high temperature, the resistance rising rate is low and it can resist the corrosion from the electrolytic solution. In this experiment, Ruthenium N719 of better photo absorption rate is used as dye, and it is made to be absorbed onto TiO2 of porous layer, then after the absorption of sun light by Ruthenium N719 dye, it will get into excited state, and electrons will be transferred from TiO2 to FTO, however, it will also be transferred to electrolytic solution to form oxidation reduction reaction to reduce the photoelectric conversion efficiency. In experiment of chapter 4, TEOS is used, through sol-gel method, to prepare SiO2 as the dielectric material of the insulator layer, and the film formation method adopted is spin-coating method. The TEOS adding amount is changed to change the film formation condition, eventually, the most appropriate concentration of film formation can be found out. Then organic dispersing agent (Octyl Phenol Ethoxylate) is added so that the molecule in the solution can be homogeneously dispersed, meanwhile, after the film is formed, its roughness can be improved, hence, AFM is used to measure the RMS value, and the measurement results all fall down below 1 nm, which shows that the adding of dispersing agent can effectively improve the roughness. Later on, these materials have been used to make MIM structure, and it was found that after adding the triton, due to the uniform dispersing of the material, the packing between materials becomes denser, besides, due to the increase in the viscosity, the film thickness is increased too, after measuring the leak current, its value is smaller by ten times than the case not added with triton. Then the thin film is applied in the insulator layer of TFT device. For the semiconductor layer, thermal evaporation method is used to evaporate pentacene, since the interface between insulator layer and semiconductor layer will change the arrangement of pentacene, O2 plasma is then used to improve the interface so that the molecule can be arranged neatly, accordingly, the carrier mobility can be affected, and the device characteristic can be gained. In chapter 5, sol-gel method is used to prepare zinc oxide thin film on the substrate, and spin-coating method is used to coat the gel onto the substrate, then through different thermal treatment, zinc oxide of different crystallinity is formed. In this study, conditions such as the change of the concentration of sol solution, whether the dispersing agent is added or not or the change of thermal treatment temperature are used to investigate the structural characteristics, electrical characteristics or the change of optical property of zinc oxide thin film prepared by sol gel method. From the experiment, it was found that when the sol concentration is lower than certain concentration, the film forming ability of zinc oxide thin film will be deteriorated; and the film thickness will also grow along with the increase of the sol concentration; besides, appropriate adding of dispersing agent will also create different surface morphology of zinc oxide thin film. In addition, under different thermal treatment temperature, the crytallinity, surface roughness and photoelectric characteristic of the thin film will also be changed. Then through the adding of zinc acetate in the sol solution, nitrogen ion is doped into zinc oxide thin film, from the experiment, it was found that zinc oxide thin film doped with nitrogen ion will have electrical property superior to thin film not doped with zinc oxide.
目次 Table of Contents
TABLE OF CONTENTS ................................................................................................. i
LIST OF TABLES .......................................................................................................... ii
LIST OF FIGURES ........................................................................................................ iii
Chapter 1 Background .................................................................................................. 1
1-1 Principles of Solar Cell Operation............................................................................. 1
1-1.1 Electrical Characteristics of The Ideal Solar Cell............................................ 4
1-1.2 Solar Cell Characteristics in Practice............................................................... 7
1-1.3 The Quantum Efficiency and Spectral Response............................................. 8
1-2 Sol-gel synthesis and analysis.................................................................................. 12
1-2.1 The effect of pH value.................................................................................... 14
1-2.2 The effect of the water amount added............................................................ 14
1-2.3 The effect of metal alkoxide............................................................................15
1-2.4 The effect of solvent........................................................................................16
1-3 Spin on dielectric.......................................................................................................17
Chapter 2 Enhancing Dye Sensitized Solar Cells Efficiency by Improving TiO2
Electrode and Dye........................................................................................................ 26
2-1 Abstract ................................................................................................................... 26
2-2 Introduction ............................................................................................................. 26
2-3 Experiment................................................................................................................28
2-3.1 Preparation of the TiO2 Particles Paste for Structured Photoanodes............. 28
2-3.2 Fabrication of DSSCs..................................................................................... 29
2-3.3 Characterization and Measurement................................................................ 30
2-4 Results and Discussion............................................................................................. 31
2-4.1 Morphologies of TiO2 Films.......................................................................... 31
2-4.2 Optical Properties of the TiO2 Films and Photoanodes................................. 33
2-4.3 Performance of DSSCs................................................................................... 35
2-5 Conclusions.............................................................................................................. 36
Chapter 3 Design of Multi-Porous Layer for Dye-Sensitized Solar Cells by Doping
with TiO2 Nanoparticles.............................................................................................. 38
3-1 Abstract ................................................................................................................... 38
3-2 Introduction ............................................................................................................. 38
3-3 Experiment............................................................................................................... 41
3-3.1 Preparation of the TiO2 Particle Paste for Multi-porous Photoanode Structures
................................................................................................................................ 41
3-3.2 Fabrication of DSSCs..................................................................................... 42
3-3.3 Characterization and Measurement................................................................ 43
3-4 Results and discussion ............................................................................................. 43
3-4.1 Morphologies of TiO2 Films.......................................................................... 43
3-4.2 Optical Properties of the TiO2 Films and Photoanodes.................................. 46
3-5 Conclusions ............................................................................................................. 49
Chapter 4 Preparation of Insulating SiO2 Nanostructured Thin Films by the Sol
-Gel Process ................................................................................................................. 51
4-1 Abstract ................................................................................................................... 51
4-2 Introduction ............................................................................................................. 51
4-3 Experiment .............................................................................................................. 53
4-3.1 Preparation of sol-gels.................................................................................... 53
4-3.2 Preparation of insulator layer thin film and device........................................ 53
4-4 Results and Discussion ........................................................................................... 55
4-4.1 Film formation characteristics and electrical properties of the thin film....... 55
4-4.2 Electrical properties of TFTs......................................................................... 64
4-5 Conclusions ............................................................................................................. 70
Chapter 5 Preparation of ZnO membrane by chemical bath deposition method via
regulated acidity........................................................................................................... 72
5-1 Abstract ................................................................................................................... 72
5-2 Introduction ............................................................................................................. 73
5-3 Experiment............................................................................................................... 74
5-4 Results and Discussion ............................................................................................ 76
5-4.1 Influence of pH value on surface morphology and cross section of ZnO thin
film........................................................................................................................... 76
5-4.2 Influence of thermal annealing on surface morphology of ZnO membrane...78
5-4.3 Measurement of optical transmission of ZnO thin film................................. 79
5-5 Conclusions ............................................................................................................. 82
Chapter 6 References .................................................................................................. 84
參考文獻 References
Chapter 1 Background
[1]Sze, S. M. Physics of Semiconductor Devices (2nd edition), Jonn Wiley & Sons,
New York (1981).
[2]Hishikawa, Y., Imura, Y. and Oshiro, T., Proc. 28th IEEE Photovoltaic Specialist
Conf., pp.1464-1467 (2000).
[3]Philips, J. E., Titus J. and Hofmann, D., Proc. 26th IEEE Photovoltaic Specialist
Conf., pp.463-466 (1997).
[4]Hegedus, S. S., Prog. Photovolt: Res. Appl., Vol. 5, pp. 151-168 (1997).
[5]Green, M. A., Silicon Solar Cells: Advanced Principles and Practice. (1995).
[6]Castaner L. and Silvestre, S., Modelling Photovoltaic Systems Using Pspice, Jonn
Wiley & Sons, Chichester, (2002).
[7]John K. Chu, Jagir S. Multani, Sanjiv K. Mittal, John T. Orton, and Robert Jecmen,
Proceedings of 3rd Intl. IEEE V-MIC Conference, June, pp. 474-483 (1986).
[8]Landon B. Vines, Satish K. Gupta, Proceedings of 3rd Intl. IEEE V-MIC Conference,
June, p506-515 (1986).
[9] A. Rey, D. La Fond, J.M. Mirabel, M.C. Tacussel and M.F. Coster, Proceedings of
3rd Intl. IEEE V-MIC Conference, June 1986, pp. 491-499 (1991).
[10] Pat Elkins, Karen Reinhardt, and Rebecca Tang, Proceedings of 3rd Intl. IEEE
V-MIC Conference, June 1986, pp. 100-106 (2010).
[12] Pei-Lin Pai, Arun Chetty, Robert Roat, Neal Cox, and Chiu Ting, J. Electrochem.
Soc.: Solid-State Science and Technology, Vol. 134, No. 11, November 1987,
pp.2829-2834 (2009).
[13] H.M. Naguib, C. Jang, T.F. Klemme, K. Wong, A. Rangappan, W.W. Yao and R.T.
Fulks, Proceedings of 4th Intl. IEEE V-MIC Conference, June 1987, pp. 93-102 (2008).
[14] Daniel L.W. Yen and Gopal K. Rao, Proceedings of 5th Intl. V-MIC Conference, June 1988, pp. 85-94. (2009).
[15] Tadashi Nakano and Tomohiro Ohta, J. Electrochem Soc., Vol. 142, No. 3, March 1995, pp. 918-925 (2011).
[16] L.E. Stillwagon and R.G. Larson, Phys. Fluids A 4 (5), May, pp. 895-903, (1992).
[17] Loni M. Peurrung and David B. Graves, IEEE Trans. on Semi. Manufacturing, VOL 6, No. 1, Feb., pp. 72-76, (1993).
[18] J. Smythe, Thesis, 2004
[19] S. Hirasawa, Y. Saito, H. Nezu, N. Ohashi, H. Maruyama, Transport Phenomena in Materials Processing and Manufacturing, ASME pp. 221-226, (1996) (Note: This work also published in IEEE Trans. on Semi. Manuf. Vol. 10, No. 4, Nov. 1997, pp. 438-444)
[20] W. Cai, T. Batchelder, J. Kennedy, Semiconductor International, June, pp. 117-120,
(1997).
[21] E. Gurer, T. Zhong, J. Lewellen, E. Lee, Proceedings of SPIE Vol. 3999, pp. 805-817, (2000).
[22] S.S. Kucherenko and K. D. Leaver, J. Micromech. Microeng. 10, pp. 299-308, (2000).
[23] E. Gurer, T. Zhong, J. Lewellen, E. Lee, Proceedings of SPIE Vol. 3999, pp. 805-817, (2000).
[24] D.E. Haas, D.P. Birnie, III, M. J. Zecchino, J.T. Figueroa, J. of Mat. Science Let. 20, pp. 1763-1766, (2001).
[25] R. Osredkar, Informacije MIDEM 31 2, pp. 102-105, (2001).

Chapter 2 Enhancing Dye Sensitized Solar Cells Efficiency by Improving TiO2 Electrode and Dye
[1]NSC International Cooperation Sci-Tech Newsbrief, No.8, August (2003).
[2] Simon Roberts, Prentice Hall (1991).
[3]Akira Fujishima, J. Phys. Chem. B 103, 3213-3217 (1999).
[4]Akira Fujishima, Journal of Photochemistry and Photobiology A: Chemistry 134, 139-142 (2000).
[5]Akira Fujishima, Journal of Photochemistry and Photobiology A: Chemistry 98,
79-86 (1996).
[6]M. Grätzel, Inorg. Chem. 44, 6841-6851 (2005)
[7]M. Grätzel, Nature 353, 737-740 (1991).
[8]M. Grätzel, International Photovoltaic Science & Engineering Conference PL 2-4 (2005).
[9]B. O’Regan and M. Grätzel, Nature 353, 737 (1991).
[10]Y. S. Jin, K. H. Kim, S. J. Park, H. H. Yoon, and H. W. Choi, J. Nanosci. Nanotechnol. 11, 10971 (2011).
[11]W. Y. Huang, C. C. Lee, S. G. Wang, Y. K. Han, and M. Y. Chang, J. Electrochem.
Soc. 157, B1336 (2010).
[12]W. Y. Huang, C. C. Lee, and T. L. Hsieh, Sol. Energy Mater. Sol .Cells 93, 382
(2009).
[13]W. Y. Huang, P. T. Huang, Y. K. Han, C. C. Lee, T. L. Hsieh, and M. Y. Chang,
Macromolecules 41, 7485 (2008).
[14]J. Qian, P. Liu, Y. Xiao, Y. Jiang, U. Cao, X. Ai, and H. Yang, Adv. Mater. 21,
3663 (2009).
[15]S. Bhattacharya, G. Mandal, M. Dutta, D. Basak, and T. Ganguly, J. Nanosci.
Nanotechnol. 11, 7735 (2011).
[16]M. Gratzel, Acc. Chem. Res. 42, 1788 (2009).
[17]J. Yu, J. Fan, and L. Zhao, Electrochim. Acta 55, 597 (2010).
[18]U. O. Krašovec, M. Berginc, M. Hocevar, and M. Topic, Sol. Energy Mater. Sol.
Cells 93, 379 (2009).
[19] Z. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, Coord. Chem. Rev. 248,
1381 (2004).
[20]Y. Zhao, J. Zhai, S. Tan, L. Wang, L. Jiang, and D. Zhu, Nanotechnology 17, 2090
(2006).
[21]Y. J. Kim, M. H. Lee, H. J. Kim, G. Lim, Y. S. Choi, N. Park,K. Kim, and W. I. Lee,
Adv. Mater. 21, 3668 (2009).

Chapter 3 Design of Multi-Porous Layer for Dye-Sensitized Solar Cells by Doping
with TiO2 Nanoparticles
[1] NSC International Cooperation Sci-Tech Newsbrief, No. 8, August (2003).
[2] S. Roberts, Solar Electricity, NJ:Prentice Hall, Englewood Cliffs (1991).
[3] C. Doran, W. V. Chen, P. K. L. Yu, T. L. Alford, and S. S. Lau, Mater. Express 2,
170 (2012)
[4] A. Fujishima, J. Phys. Chem. B 103, 3213 (1999).
[5] A. Fujishima, J. Photochemistry and Photobiology A: Chemistry 134, 139 (2000).
[6] A. Fujishima, J. Photochemistry and Photobiology A: Chemistry 98, 79 (1996).
[7] M. Grätzel, Inorg. Chem. 44, 6841 (2005).
[8] M. Grätzel, Nature 353, 737 (1991).
[9] M. Grätzel, in Proceedings of the International Photovoltaic Science & Engineering
Conference, 2005, PL 2-4.
[10] B. O’Regan and M. Grätzel, Nature 353, 737 (1991).
[11] Y. S. Jin, K. H. Kim, S. J. Park, H. H. Yoon, and H. W. Choi, J. Nanosci.
Nanotechnol. 11, 10971 (2011).
[12] W. Y. Huang, C. C. Lee, S. G. Wang, Y. K. Han, and M. Y. Chang, J. Electrochem.
Soc. 157, B1336 (2010).
[13] W. Y. Huang, C. C. Lee, and T. L. Hsieh, Sol. Energy Mater. Sol .Cells 93, 382
(2009).
[14] W. Y. Huang, P. T. Huang, Y. K. Han, C. C. Lee, T. L. Hsieh, and M. Y. Chang,
Macromolecules 41,7485 (2008).
[15] J. Qian, P. Liu, Y. Xiao, Y. Jiang, U. Cao, X. Ai, and H. Yang, Adv. Mater. 21,
3663 (2009).
[16] S. Bhattacharya, G. Mandal, M. Dutta, D. Basak, and T. Ganguly, J. Nanosci.
Nanotechnol. 11, 7735 (2011).
[17] M. Grätzel, Acc. Chem. Res. 42, 1788 (2009).
[18] J. Yu, J. Fan, and L. Zhao, Electrochim. Acta 55, 597 (2010).
[19] U. O. Krašovec, M. Berginc, M. Hocevar, and M. Topic, Sol. Energy Mater. Sol.
Cells 93, 379 (2009).
[20] Z. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, Coord. Chem. Rev. 248,
1381 (2004).
[21] Y. Zhao, J. Zhai, S. Tan, L. Wang, L. Jiang, and D. Zhu, Nanotechnology 17, 2090
(2006).
[22] Y. J. Kim, M. H. Lee, H. J. Kim, G. Lim, Y. S. Choi, N. Park,K. Kim, and W. I.
Lee, Adv. Mater. 21, 3668 (2009).
[23] J. Talla, S. Curran, S. Dias, and J. Dewald, Mater. Express 1, 337 (2011)
[24] N. A. Dahoudi, J. Xi and G. Cao, Electrochim. Acta 59, 3238 (2012).
[25] D. H. Kim, J. H. Heo, D. J. Kwak and Y. M. Sung, J. Electr. Eng. Technol. Vol. 5,
No. 1, 149 (2010).
[26] C. Ballifa, J. Dickerb, D. Borcherta, and T. Hofmann, Sol. Energy Mater. & Sol.
Cells 82, 334 (2004).
[27] J. A. Chang, M. Vithal, I. C. Baek and S. I. Seok, J. Solid State. Chem. 182,750
(2009).
[28] C. Xu and Z. L. Wang, Adv. Mater. 23, 873 (2011).
[29] S. Suresh, A. Pandikumar, S. Murugesan, R. Ramaraj, and S. P. Raj, Mater.
Express 1, 312 (2011).


Chapter 4 Preparation of Insulating SiO2 Nanostructured Thin Films by the
Sol-Gel Process
[1]. J. Ebelmen: J. Ann. 57 331 (1846).
[2]. W. Geffcken and E. Berger: German Patent 736 411 (1939).
[3]. H. Schroeder: Phys. Thin Film 5 87 (1969).
[4]. J. L. Woodhead: Silicate Ind. 37 191 (1972).
[5]. L. Levene and I. M. Thomas: U.S. Patent 3 640 093 (1972).
[6]. H. Dislich: Angewandt Chemie, 10 363 (1971).
[7]. G. S. Sur and J. E. Mark: J. Eur Polym., 21 (1051).
[8]. J. E. Mark and G. S. Sur: Polym. Bull., 14 325 (1985).
[9]. S. J. Clarson and J. E. Mark: Polym. Commun. 28 249 (1987).
[10]. Y. Imai, Adv. in polymer sci. 140 1 (1999).
[11].J.A. He, L. Samuelson, L. Li, J. Kumar and S.K. Tripathy, Adv. Materials,vol.11
435-446 (1999).
[12]. M. Guglielmi, G. Brusatin, G. Facchin and M. Gleria: Appl. Organometallic Chem.
13 339 (1999).
[13]. T. Yoshihiro, M. Akinori, K. Kenzo and U. Kenji. J. Lumin. 87 767 (2000).
[14]. M. Opallo and J. Kukulka: Electrochem. Commun. 2 394 (2000).
[15]. M. Shinya, N. Hiroyoshi, K. Yoshihiko, M. Kimihiro and I. Hiroshi: J.
Organometallic Chemistry. 611 40 (2000).
[16]. S.H. Jang, M.G. Han and S.S. Im: Synth. Met. 110 17 (2000).
[17]. T.C. Chang, Y.T. Wang, Y.S. Hong, H.B. Chen and J.C. Yang: Polymer
Degradation and Stability. 69 317 (2000).
[18]. D. Kai and B. Regina: Catalysis Commun.1 (2000).
[19]. W. C. Jae and I. S. Kyung: Polymer. 42 727 (2001).
[20]. H. K. Schmidt: Mater. Res. Soc. Symp. Proc. 32 327 (1984).
[21]. H. K. Schmidt: Mater. Res. Soc. Symp. Proc. 180 961 ( 1990).
[22]. U. Schubert, H. Sing, N. Lorenz: A. Chem. Mater. 7 2010 (1995).
[23]. D. A. Loy, K. J. Shea: Chem. Rev. 95 1431 (1995).
[24]. P. Judenstein, and C. Sanchez J. Mater. Chem. 6, 511 (1996).
[25]. K. J. Shea, D. A. Loy and O.W. Webster, Chem. Mater. 1 574 (1989).
[26]. K. M. Choi and K. J. Shea: J. Am. Chem. Soc. 116 9052 (1994).
[27]. K. M. Choi and K. J. Shea: J. Phys. Chem. 98 3207 (1994).
[28]. K. M. Choi, J. C. Hemminger and K. J. J. Shea, Phys. Chem. 99 4720 (1995).
[29]. H. W. Oviatt, K. J. Shea, S. Kalluri, Y. Q. Shi, W. H. Steier and L. R. Dalton:
Chem. Mater. 7 493 (1995).
[30]. H. W. Oviatt Jr, K. J. Shea and J. H. Small: Chem. Mater. 5 943 (1993).
[31]. D. A. Loy, G. M. Jamison, B. M. Baugher, S. A. Myers, R. A. Assink and K. J.
Shea: Chem. Mater. 8, 656 (1996).
[32]. C. J. Brinker and G. W. Scherer: New York, Academic Press, (1990).
[33]. E. Yengel, L. Wang, M. Ozkan and C. S. Ozkan: Proc. of SPIE 7411 74110B
(2009).
[34]. J. T. Lue: Encyclopedia of Nanosci. and Nanotechnol. X 1-46 (2007).
[35]. R. Ciriminna, M. Sciortino, G. Alonzo, A. de Schrijver, and M. Pagliaro: Chem.
Rev. (2010).
[36]. J. Hilding, E. A. Grulke, Z. G. Zhang, and F. Lockwood: J. Disp. Sci. Technol. 24
1 1–41 (2003).
[37]. R. Zhang, P. Somasundaran: Adv. Colloid Interface Sci. 123–126 213–229 (2006).
[38]. K. Park, J. Y. Choi, H. J. Lee, J. Y. Kwon, and H. Kim: Japanese J. Appl. Phys. 50
(2011).
[39]. M. W. Lee and C. K. Song: Japanese J. Appl. Phys., 42, (2003).

Chapter 5 Preparation of ZnO membrane by chemical bath deposition method via
regulated acidity
[1] C.H. Lee, L.Y. Lin, Appl. Surf. Sci. 92 163-166 (1996).
[2] N.W. Eman E. Glu, C. Corla, G.S.L. Ian, IEEE Trans. Ultrasonics Ferroelectrics
and Frequency Control, 48(5) 1389-1394 (2001).
[3] E. Dumont, B. Dugnoille, S. Bienfait, Thin Solid Films 353 93-99 (1999).
[4] D.H. Bao, A. Kuang, H. Gu, Thin Solid Films 312(1-2) 37–39 (1998).
[5] S.H. Bae, S.Y. Lee, H.Y. Kim, S. Im, Opt. Mater. 17 327-330 (2001).
[6] A. Jim~nez-Gonzfilez, R. Sufirez-Parra, J. Cryst. Growth 167 649-655 (1996).
[7] X.D. Gao, X.M. Li, W.D. Yu, J. Solid State Chem. 177 3830-3834 (2004).
[8] M. Ortega-Lopez, A. Avila-Garcla, M.L. Albor-Aguilera, V.M. Aanchez-Resendiz,
Mater. Res. Bull. 38 1241-1248 (2003).
[9] V.R. Shinde, C.D. Lokhande, R.S. Mane, S.-H. Han, Appl. Surf. Sci. 245 407-413
(2004).
[10] J.M. Dona, J. Herero, J. Electrochem. Soc. 144(11) 4081-4098.
[11] A. Sarkar, S. Ghosh, S. Chaudhuri, A.K. Pal, Thin Solid Films 204 255-264 (1991).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code