Responsive image
博碩士論文 etd-0526114-155412 詳細資訊
Title page for etd-0526114-155412
論文名稱
Title
傾斜角度對火焰在薄固體上傳播之影響
The Effects of Inclined Angular Orientation on Flame Spread over Thin Solids
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
66
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-04-21
繳交日期
Date of Submission
2014-06-27
關鍵字
Keywords
微重力場、傾斜角度、火焰傳播
upward spreading flame, inclined angle, partial gravity
統計
Statistics
本論文已被瀏覽 5655 次,被下載 630
The thesis/dissertation has been browsed 5655 times, has been downloaded 630 times.
中文摘要
此研究在於探討順流火焰在薄燃料上穩定傳播之現象。實驗選用三種參數,分析參數對火焰在薄燃料(紙)上傳播所造成的影響。分別為傾斜角度;燃料寬度以及面積密度。傾斜角度設定與重力方向的夾角,角度範圍在0度至75度之間,以15度為一區間。發現傾斜角度越大,火焰長度縮短,火焰傳播速率下降。燃料寬度選用1公分、1.25公分以及1.5公分,發現火焰傳播速率隨寬度增加而增加。面積密度選用0.0128(樣本A)、0.0061(樣本B)以及0.0028(樣本C)g/cm2 ,火焰傳播速率隨面積密度增加而減小。
模擬部分使用二維的穩態向上傳播火焰模型,忽略氣相輻射效應,探討薄固體燃料在低速浮力流場中,順流火焰在傾斜的薄燃料上傳播之現象,以及火焰傳播速率的比較。發現了當傾斜角度(燃料平行重力場方向為0度)越大時,火焰長度呈現對稱的現象,隨著氣態反應速率下降,火焰長度不對稱情形明顯出現。當傾斜角度大於30度時,火焰長度及火焰傳播速率明顯下降。當重力場越大時,火焰呈現細長結構,火焰傳播速率越快。當重力場下降,火焰長度縮短,火焰傳播速率較慢。在熄滅極限的參數模擬中,隨著傾斜角度越大,火焰的熄滅極限範圍變小。在較高重力場大小下,氣體反應速率範圍呈現震盪的情形,火焰傳播速率無法達到穩態。低重力場下,火焰穩定區的氣態反應速率較小,無法支持火焰傳播而導致熄滅。
Abstract
The upward spreading flames are studied by experiments and numerical simulations in this study. In the experiments, flame spread on several narrow sample widths (1cm 1.25cm and 1.5cm) are tested; for the numerical simulation, a two-dimensional model is used (infinite wide width) to simulate the stead flame propagation. The effects of the inclined angle and area density of sample paper on flame shape and spread rate are investigated.
From the experiments, it is found that the flame spread rate increases as sample width increases. In this study, several area densities, 0.0128g/cm2, 0.0061g/cm2 and 0.0028g/cm2 are also test in the experiments. The experimental data shows that the flame spread rate decreases as the area density increases. In addition, as the inclined angle ( 0-75 degree from the vertical) is increased, the flame length becomes shorter and the flame spread rate becomes slower.
A two-dimensional model without gas-phase radiation is used to simulate the steady upward propagating flame. The effects of inclined angle and gravity level are tested. Similar to the experimental results, the flame length and spread rate decreases with the increase in inclined angle. As the gravity level is increase, the flame length increases. A low-gravity flame quenching limit can be found in this model. At high gravities, the oscillating and pulsating flames are simulated and no steady spreading flame exists. At low gravity, the convection heat to solid decreases and eventually leads to flame extinguishing.
目次 Table of Contents
目錄 vi
圖目錄 viii
表目錄 xi
第一章 序論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究目的 13
第二章 實驗設備及方法 15
2.1 實驗儀器與設備 15
2.2 量測穩態火焰傳播速率及誤差 18
2.3 實驗規劃 20
第三章 數值模型 22
3.1數學模型 23
3.2 數值方法 26
第四章 結果與討論 27
4.1燃料樣本角度影響 29
4.2燃料樣本寬度的影響 31
4.3燃料樣本面積密度的影響 33
4.4無因次重力場大小對火焰傳播速率的影響 33
4.5模擬角度對火焰結構之影響 37
4.6模擬面積密度對火焰結構之影響 39
4.7模擬重力場對火焰結構的影響 40
4.8模擬火焰熄滅極限 41
第五章 結論 43
參考文獻 45
參考文獻 References
[1] G.H. Markstein and J. de Ris, Upward fire spread over textiles, 14th Symp. (Int’l) on Combustion, pp.1085-1097, 1973.
[2] D.D. Drysdale and A.J.R. Macmillan, Flame spread on inclined surfaces, Fire Safety J. 18 (1992) : 245-254.
[3] T. Kashiwagi and D.L. Newman, Flame spread over an inclined thin fuel surface, Combust Flame 26 (1976) : 163-177.
[4] T. Hirano, S.E. Noreikis and T.E. Waterman, Postulations of flame spread mechanisms, Combust. Flame 22 (1974) : 353-363.
[5] J.G. Quintiere, The effects of angular orientation on flame spread over thin materials, Fire Safety J. 36(2001) : 291-312.
[6] Ito and T. Kashiwagi, Characterization of flame spread over PMMA using holographic interferometry sample orientation effects, Combust. Flame 71 (1988) : 189-204.
[7] A.C. Fernandez-Pello, A theoretical model for the upward laminar spread of flames over vertical fuel surfaces, Combust. Flame 31 (1978) : 135-148.
[8] J.G. Quintiere, A theoretical basis for flammability properties, Fire Materials 30 (2006) : 175-214.
[9] J. de Ris, The spread of laminar diffusion flame, 12th Symp. (Int’l) on Combustion, pp. 241-252, 1968.
[10] P.J. Pagni and T.M. Shih, Excess pyrolyzate, 16th Symp. (Int’l) on Combustion, pp. 1329-1343, 1977.
[11] S.Y. Hsu and J.S. T'ien, Effect of Chemical Kinetics on Concurrent-Flow Flame Spread over Solids: A Comparison Between Buoyant Flow and Forced Flow, Combustion Science and Technology 183.4 (2011) : 390-407.
[12] T. Ahmad, and G.M. Faeth, An investigation of the laminar overfire region along upright surface, J. Heat Transfer 100 (1978) : 112-119.
[13] C.H. Chen and J.S. T;ien, Fire plume along vertical surfaces: Effect of finite-rate chemical reactions, J. Heat Transfer 106 (1984) : 713-720.
[14] F.J. Kosdon, F.A. William and C. Buman, Combustion of vertical cellulosic cylinders in air, 12th Symp. (Int’l) on Combustion, pp. 253-264, 1968.
[15] J.S. Kim, J. de Ris and F.W. Kroesser, laminar free-convective burning of fuel surfaces, Proc. Combust. Inst. 13 (1971) : 949-961.
[16] J.L. Torero, T. Vietoris, G. Legros and P. Joulain, Estimation of a total mass transfer number from the standoff distance of a spreading flame, Combust Sci. Tech. 174 (2002) : 187-203.
[17] J.L. Consalvi, Y. Pizzo, A. Kaiss, B. Porterie and J.L. Torero, A theoretical and numerical evaluation of the steady-state burning rate of vertically oriented PMMA slabs, Combust. Theory and Modelling, 12 (2008) : 451-475.
[18] A. Kumar, H.Y. Shih and J.S. T’ien, A comparison of extinction limits and spreading rates in opposed and concurrent spreading flames over thin solids, Combust. Flame 123 (2003) : 667-677.
[19] J.L. Consalvi, Y. Pizzo and B. Porterie, Numerical analysis of the heat process in upward flame sprad over thick PMMA slab, Fire Safety Jourmal 43 (2008) : 351-362.
[20] A.S Rangwala, S.G. Buckley amd J.L. Torero,Analysis of the constant B-number assumption while modeling flame spread, Combust. Flame 152 (2008) : 401-414.
[21] H. Emmons and Z. Angew, The film combustion of liquid fuel, Math. Mech 36 (1956) : 60-71.
[22] T. Ahmad and G.M. Faeth, Turbulent wall fires, Proc. of the 17th Sym. on Combust., pp.1149-1160, 1979.
[23] Y. Pizzo, J.L. Consalvi and B. Porterie, A transient pyrolysis model based on the B-number forgravity-assisted flame spread over thick PMMA slabs, Combust Flame 156 (2009) : 1856-1859.
[24] W. Xie and P.E. DesJardin, An embedded upward flame spread model using 2D direct numerical simulations, Combust. Flame 156 (2009) : 522-530.
[25] A. Hamins, J. Fischer, T. Kashiwagi, M.E. Klassen, and J.P. Gore, Heat feedback to the fuel surface in pool fires, Combust. Sci. Tech. 97 (1994) : 37-62.
[26] A. Tewarson, J.L. Lee and R.F. Poin, The inference of oxygen concentration on fuel parameters for fire modeling, 18th Symp. (Int’l) on Combustion, pp.563-570, 1981.
[27] Y. Pizzo, J.L.Consalvi, P. Querre, M. Coutin and B. Porterie, Width effects on the early stage of upward flame spread over PMMA slabs: Experimental observations, Fire Safety J. 44(2009) : 407-414.
[28] K.C. Tsai, Width effect on upward flame spread, Fire Safety J. 44 (2009) : 962-937.
[29] C.B. Jiang, J.S. Tien and H.Y. Shih, Model calculation of steady upward flame spread over a thin solid in reduced gravity, 26th Symp. (Int’l) on Combustion, pp.1353-1360, Elsevier, 1996.
[30] H.Y. Shih, Computed flammability limits and spreading rates of upward flame spread over a thin solid in low-speed buoyant flows, Combustion Science and Technology, 181 (2009) : 379-395.
[31] “National Aeronautics and Space Administration: Flammability, odor, offgassing, and compatibility requirements and test procedures for materials in environments that support combustion, ” NASA-STD-6001, 1998.
[32] J.S. T’ien, H.Y. Shih, C.B. Jiang, H.D. Ross, F.J. Miller, A.C. Fernandez-Pello, J.L.Torero and D. Walther, Mechenism of Flame Spread and Smolder Wave Propagation, Chapter 5, Microgravity Combustion: Fire in free wall (H.Ross, ed), Academic Press, San Diego (2001).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code