Responsive image
博碩士論文 etd-0526114-161004 詳細資訊
Title page for etd-0526114-161004
論文名稱
Title
面射型半導體雷射之偏振切換與易辛模型的類比研究
Analogy between the Polarization Switching of Vertical-Cavity Surface-Emitting Lasers and Ising Model
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
50
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-03
繳交日期
Date of Submission
2014-07-04
關鍵字
Keywords
偏振切換、易辛模型、面射型半導體雷射、相變
polarization switchingn, VCSELs, phase transitio, Ising model
統計
Statistics
本論文已被瀏覽 5717 次,被下載 584
The thesis/dissertation has been browsed 5717 times, has been downloaded 584 times.
中文摘要
本論文以易辛模型的模擬研究面射型半導體雷射之偏振切換的現象。針對面射型半導體雷射光的兩種特性(空間同調與偏振有序到有序的轉換)進行探討。首先,我們主要研究的雷射是一個高斯單橫模的面射型半導體雷射。從空間同調性的角度來看,我們將一個帶有高斯基模形狀之交互作用加入二維的易辛模型中。而它對於無序到有序的轉變呈現一個弱一階相變,其原因是高斯基模形狀之交互作用所造成的空間不勻稱性,故說明這樣形式的交互作用並不適用於敘述雷射的空間同調性。對於面射型半導體雷射之偏振切換的有序到有序轉變,有外加場的易辛模擬給予一個現象上的描述,並暗示面射型半導體雷射之偏振切換是一個一階相變。雖然面射型半導體雷射的共振腔有著良好的圓對稱,但比較兩系統後,結果指出面射型半導體雷射之偏振切換的系統中存在一個由電流引發的對稱破缺作用,同時也暗示對於快速偏振切換且帶有遲滯的系統中,交互作用的強度需要足夠讓整個系統處於一個自發性的有序態。而在易辛模型中這個參考的交互作用力強度約為1/2.3。本研究提供一個可能的解答,對於面射型半導體雷射之偏振切換的交互作用。我們更期待未來有更多快速偏振切換與緩慢偏振切換的實驗能驗證此項研究。
Abstract
An Ising simulation is used to investigate the phase transition in the polarization switching (PS) of vertical-cavity surface-emitting lasers (VCESLs). This study focuses on two features of VCSELs’ light. One is the spatial coherence of beam, and the other is the order-to-order transition of VCSELs’ PS (VPS). The main laser represented in this thesis is a single-transverse-mode VCSEL with a Gaussian beam profile. From a point of view of an excellent spatial coherence due to stimulated emission, we added a Gaussian-function distribution in the interaction energy of a 2-D Ising model. The simulation result shows a weak first-order phase transition for disorder-to-order transition because of the inhomogeneous interaction in space, and suggests that it is an improper way to imitate the spatial coherence of laser. For the order-to-order transition in the VPS, the Ising simulation with an external field could give a phenomenological description to understand the interaction in VPS and suggest VPS is a first order phase transition (FOPT). Although the cavity of VCSEL has a great circular symmetry, the results also indicate an existence of a symmetry-breaking mechanism induced by injection current in VPS system and imply the interaction for an abrupt VPS with hysteresis should be strong enough to make the whole system be in a spontaneous order state. The reference value of the interaction strength is 1/2.3 for the Ising model. This study proposes a possible answer to VPS’s interaction. We hope more experiments for the abrupt and the gradual VPS could support it.
目次 Table of Contents
Approval i
Acknowledgement ii
Abstract (Chinese) iii
Abstract (English) iv
Contents v
Figure contents vi
Table contents viii
Chapter-1 Introduction 1
Chapter-2 Operating Principles of VCSELs and Ising model 4
2-1 Operating Principles of Laser 4
2-1.1 Two-level system and stimulated emission 4
2-1.2 Pump and population inversion 5
2-1.3 Gain medium and cavity 5
2-2 Polarization switching of vertical-cavity surface-emitting lasers 7
2-3 Ising model 9
2-3.1 Introductions 9
2-3.2 Second order phase transition and first order phase transition 9
2-3.3 Critical phenomenon 11
Chapter-3 Earlier studies of polarization switching and dynamic Ising model 14
3-1 Experiment of VPS as dynamical bifurcation 14
3-2 Dynamical bifurcation of VPS due to temperature delay 16
3-3 Critical phenomena in VPS 18
3-4 Dynamical Ising simulation 20
Chapter-4 Experiment setup and simulation method 23
4-1 Experiment setup 23
4-1.1 VECSL Arima ADL-85013VL 23
4-1.2 Laser driving system 24
4-1.3 Detection system Detection system 25
4-1.4 Temperature controlling system 26
4-2 Simulation method 27
Chapter-5 Experiment and simulation results 30
5-1 Gaussian-distribution interaction and weak first order phase transition 30
5-2 Hysteresis in VPS and IM in a time-dependant external field (TFIM) 33
5-3 Relaxation time and critical slowing down 34
5-3.1 Quasi-step current for VCSEL 34
5-3.2 Step temperature for CIM and GDIM 35
5-3.3 Step external field for Ising model at low T and high T 37
Chapter-6 Conclusion 39
References ix
參考文獻 References
[1] R. Michalzik, VCSELs. New York: Springer, 2013.
[2] J. Paul, C. Masoller, Y. Hong, P. S. Spencer, and K. A. Shore, "Experimental study of polarization switching of vertical-cavity surfaceemitting lasers as a dynamical bifurcation," Opt. Lett., vol. 31, no. 6, pp. 748–750, Mar. 2006.
[3] C. Masoller and M. S. Torre, "Modeling thermal effects and polarization competition in vertical-cavity surface-emitting lasers," Opt. Express, vol. 16, no. 26, pp. 21282–21296, Dec. 2008.
[4] Y. Liu, W. C. Ng, K. D. Choquette and K. Hess, "Numerical Investigation of Self-Heating Effects of Oxide-Confined Vertical-Cavity Surface-Emitting Lasers," IEEE J. Quantum Electron., vol. 41, no. 1, pp. 15–25, Jan. 2005.
[5] G. Verschaffelt, J. Albert, B. Nagler, M. Peeters, J. Danckaert, S. Barbay, G. Giacomelli and F. Marin, "Frequency Response of Polarization Switching in Vertical-Cavity Surface-Emitting Lasers," IEEE J. Quantum Electron. vol. 39, no. 10, pp. 1177–1186, Oct. 2005.
[6] C. Masoller, M. S. Torre, and P. Mandel, "Influence of the injection current sweep rate on the polarization switching of vertical-cavity surface-emitting lasers," J. Appl. Phys., vol. 99, no. 2, pp. 026108-1–026108-3, Jan. 2006.
[7] J. Paul, C. Masoller, P. Mandel, Y. Hong, P. S. Spencer, and K. A. Shore, "Experimental and theoretical study of dynamical hysteresis and scaling laws in the polarization switching of vertical-cavity surface-emitting lasers," Phys. Rev. A, vol. 77, no. 4, pp. 043803-1–043803-8, Apr. 2008.
[8] M. S. Torre and C. Masoller, "Dynamical hysteresis and thermal effects in vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron., vol. 46, no. 12, pp. 1788–1794, Dec. 2010.
[9] W. C. Kuo, Y. H. Wu, Y. C. Li and T. C. Yen, " Criticalities and phase transitions in the polarization switching of vertical-cavity surface-emitting lasers," IEEE Photon. Technol. Lett., vol. 24, no. 24, pp. 2262–2264, Dec. 2012.
[10] D. V. Schroeder, Thermal physics. Boston: Addison Wesley Longman, 2000.
[11] F. Krauss. (2009, Jul 21). Phase Transitions-First Order Phase Transitions [Online]. Available: http://www.ippp.dur.ac.uk/compphys/PhaseTransitions/Lecture/pt3.html
[12] K. Binder, "Theory of first-order phase transitions," Rep. Prog. Phys. vol. 50, no. 7, pp. 783-895, Jul. 1987.
[13] V. DeGiorgio and M. O. Scully, "Analogy between the Laser Threshold Region and a Second-Order Phase Transition," Phys. Rev. A. vol. 2, no. 4, pp. 1170-1177, Oct. 1970.
[14] C. Z. Ning and J. V. Moloney, "Thermal effects on the threshold of vertical-cavity surface-emitting lasers: first- and second-order phase transitions," Opt. Lett. Vol. 20, no. 10, pp. 1151-1153, May. 1995.
[15] W. S. Lo and A. P. Robert, "Ising model in a time-dependent magnetic field," Phys. Rev. B, vol. 42, no. 12, pp. 7471-7474, Dec. 1990.
[16] W. M. Peter and H. E. Joseph, Laser physics. New York: Wiley, 2010.
[17] Wikipedia. (2014, May 14). Laser [Online]. Available: http://en.wikipedia.org/wiki/Laser
[18] Introduction to Laser Technology, CVI Melles Griot, Albuquerque, NM, 2010.
[19] Y. F. Chen, P. H. Chin, C. Hsu, S. Quadir, Y. C. Li, Y. H. Wu and T. C. Yen, " Temperature-dependent multi-polarization switching in VCSELs ," American Physical Society March Meeting, Baltimore, MD, 2013.
[20] S. Torquato, "Toward an Ising model of cancer and beyond," Phys. Biol. vol. 8, no. 1, pp. 015017-1-015017-22, Jul. 2011.
[21] A. Pelissetto and E. Vicari, "Critical Phenomena and Renormalization-Group Theory," Phys. Rep. vol. 386, no. 6, pp. 549-727, Apr. 2002.
[22] E. Demidov. (2002, Jan 2). Critical slowing down [Online]. Available: http://www.ibiblio.org/e-notes/Perc/rel.htm
[23] H. Bruus and K. Flensberg, Many-body quantum theory in condensed matter physics. Oxford, U.K.: Oxford Graduate Texts, 2004.
[24] Y. C. Li, Y. H. Wu, W. C. Kuo and T. C. Yen, "Numerical investigation of polarization switching in vertical-cavity surface-emitting lasers by temperature rate equation," American Physical Society March Meeting, Boston, MA , 2012.
[25] A. Kuklov, N. Prokof’ev and B. Svistunov, "Weak First-Order Superfluid-Solid Quantum Phase Transitions,” Phys. Rev. Lett. vol. 93, no. 23, pp. 230402-1- 230402-4, Dec. 2004.
[26] A. M. Bratkovsky and A. P. Levanyuk, "Smearing of Phase Transition due to a Surface Effect or a Bulk Inhomogeneity in Ferroelectric Nanostructures," Phys. Rev. Lett. vol. 94, no. 10, pp. 107601-1- 107601-4 Mar. 2005.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code