Responsive image
博碩士論文 etd-0526115-133008 詳細資訊
Title page for etd-0526115-133008
論文名稱
Title
鋅摻雜對新穎材料Cu2OSeO3相變化效應研究
Effect of Zn substitution on the Skyrmion phase in Cu2OSeO3
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
65
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-06
繳交日期
Date of Submission
2015-06-29
關鍵字
Keywords
相圖、漩渦狀、skyrmion、Cu2OSeO3、摻雜效應
vortex, phase diagram, Cu2OSeO3, skyrmion, doping effect
統計
Statistics
本論文已被瀏覽 5674 次,被下載 432
The thesis/dissertation has been browsed 5674 times, has been downloaded 432 times.
中文摘要
在凝態物理領域中,發現新的磁狀態是個很有潛力的研究項目,而skyrmion狀態(A-phase)是其中一種磁矩會形成漩渦狀排列的新穎磁狀態。此現象最先被發現於金屬化合物MnSi,之後才被發現於絕緣體Cu2OSeO3中,此種非比尋常的磁有序現象,會出現於特定之溫度與磁場範圍下。
現今,我們研究著重於Cu2OSeO3系統中,非磁性元素對skyrmion相之摻雜效應。我們對使用固態合成法製成之多晶樣品 —— (Cu1-xZnx)2OSeO3 ( x = 0, 0.01, 0.02, 0.04, 0.06, 0.08, 0.10, 0.15, 0.20)做了XRD檢測與磁性量測。此樣品的晶格結構屬於非對稱中心立方體P213,XRD檢測結果顯示,當x≦0.20時,晶格常數變化與鋅摻雜量會呈線性趨勢,說明鋅成功取代銅,摻雜於樣品中。隨著鋅摻雜量增加,居里溫度(TC)與磁化強度有逐漸下降趨勢,顯示鐵磁相逐漸被抑制,此外,我們發現在0.02<x<0.20時,會出現另一個磁相,且其磁轉變也是隨著鋅摻雜量增加往低溫區位移。所有樣品都透過不同溫度下之交流磁化率掃磁場(χˈac-H)的量測,進而得到一系列H-T相圖。我們將會探討摻雜效應對skyrmion 樣品Cu2OSeO3之A-phase有何影響。
Abstract
There is a considerable interest growing on the discovery of new magnetic state in the field of condensed matter physics. Skyrmion state (A-phase) is one kind of such novel magnetic phase where spin forms the vortex-like ordering. This phenomena was initially discover in metallic MnSi and later realized in insulating Cu2OSeO3. This unusual magnetic ordering appeared in a finite temperature and magnetic field window. In this present work we are studying the influence of nonmagnetic element substitution on the skyrmion phase of the Cu2OSeO3 system. Polycrystalline (Cu1-xZnx)2OSeO3 ( x = 0, 0.01, 0.02, 0.04, 0.06, 0.08, 0.10, 0.15, 0.20) samples were synthesized using solid state reaction method and characterized by XRD, and magnetic measurements. The crystal structure belongs to the non-centrosymmetric cubic space group P213. Variation of lattice constant with Zn doping follows the Vegard’s law which signifies the fairly successful substitution of Zn in place of Cu up to x≦0.20. The Curie temperature and the value of magnetization decrease with higher Zn doping indicate the ferrimagnetic ordering is gradually suppressed. Moreover, we have notice another magnetic phase for the doping level 0.02<x<0.20, whose magnetic transition also shifted to low temperature for higher Zn doping. The H-T magnetic phase diagrams of all the samples from ac susceptibility by scanning magnetic field (χˈac-H) have been established with increasing Zn doping. The explanations for the observations of doping effects on the A-phase of skyrmion Cu2OSeO3 will be discussed.
目次 Table of Contents
論文審定書+i
論文公開授權書+ii
致謝+iii
論文摘要+iv
Abstract+v
目錄+vi
圖目錄+vii
表目錄+viii
第一章:簡介+1
1-1 Skyrmion+1
1-2 Cu2OSeO3簡介+4
1-3 研究動機+8
第二章:樣品製作及實驗量測介紹+10
2-1 (Cu1-xZnx)2OSeO3, x = 0 to 0.20製備方法+10
2-2 X-ray 結構檢測+11
2-3超導量子干涉儀+12
2-3-1 儀器介紹+12
2-3-2 量測方式+16
第三章:實驗結果與討論+18
3-1 X-ray結構檢測結果+18
3-2 磁性量測結果+21
第四章:結論+45
參考文獻+47
參考文獻 References
[1] C. Thessieu, C. Pfleiderer, A. N. Stepanov, and J. Flouquet, “Field dependence of the magnetic quantum phase transition in MnSi”, J. Phys.: Condens. Matter 9, 6677 (1997).
[2] N. Potapova, V. Dyadkin, E. Moskvin, H. Eckerlebe, D. Menzel, and S. Grigoriev, “Magnetic ordering in bulk MnSi crystals with chemically induced negative pressure”, Phys. Rev. B 86, 060406(R) (2012).
[3] K. Koyama, T. Goto, T. Kanomata, and R. Note, “Observation of an itinerant metamagnetic transition in MnSi under high pressure”, Phys. Rev. B 62, 986 (2000).
[4] W. Münzer, A. Neubauer, T. Adams, S. Mühlbauer, C. Franz, F. Jonietz, R. Georgii, P. Böni, B. Pedersen, M. Schmidt, A. Rosch, and C. Pfleiderer, “Skyrmion lattice in the doped semiconductor Fe1-xCoxSi”, Phys. Rev. B 81, 041203(R) (2010).
[5] S. V. Grigoriev, D. Chernyshov, V. A. Dyadkin, V. Dmitriev, S. V. Maleyev, E. V. Moskvin, D. Menzel, J. Schoenes, and H. Eckerlebe, “Crystal Handedness and Spin Helix Chirality in Fe1-xCoxSi”, Phys. Rev. Lett. 102, 037204 (2009).
[6] S. X. Huang and C. L. Chien, “Extended skyrmion phase in epitaxial FeGe(111) thin films”, Phys. Rev. Lett. 108, 267201 (2012).
[7] H. Wilhelm, M. Baenitz, M. Schmidt, C. Naylor, R. Lortz, U. K. Rößler , A. A. Leonov, and A. N Bogdanov, “Confinement of chiral magnetic modulations in the precursor region of FeGe”, J. Phys.: Condens. Matter 24, 294204 (2012).
[8] N. J. Ghimire, “Complex magnetism in noncentrosymmetric magnets”, PhD diss., University of Tennessee (2013).
[9] S. Zhang, J. Wang, Q. Zheng, Q. Zhu, X. Liu, S. Chen, C. Jin, Q. Liu, C. Jia, and D. Xue, ”Current-induced magnetic skyrmions oscillator”, New J. Phys. 17, 023061 (2015).
[10] S. Seki, X. Z. Yu, S. Ishiwata, and Y. Tokura, “Observation of skyrmions in a multiferroic material”, Science 336, 198 (2012).
[11] S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, “Skyrmion lattice in a chiral magnet”, Science 323, 915 (2009).
[12] M. Belesi, I. Rousochatzakis, M. Abid, U. K. Röβler, H. Berger, and J.-Ph. Ansermet, “Magnetoelectric effects in single crystals of the cubic ferrimagnetic helimagnet Cu2OSeO3”, Phys. Rev. B 85, 224413 (2012).
[13] Jan-Willem G. Bos, C. V. Colin, and T. T. M. Palstra, “Magnetoelectric coupling in the cubic ferrimagnet Cu2OSeO3”, Phys. Rev. B 78, 094416 (2008).
[14] I. A. Sergienko and E. Dagotto, “Role of the Dzyaloshinskii-Moriya interaction in multiferroic perovskites”, Phys. Rev. B 73, 094434 (2006).
[15] J. H. Yang, Z. L. Li, X. Z. Lu, M.-H. Whangbo, S.-H. Wei, X. G. Gong, and H. J. Xiang, “Strong Dzyaloshinskii-Moriya interaction and origin of ferroelectricity in Cu2OSeO3”, Phys. Rev. Lett. 109, 107203 (2012).
[16] C. D. Hu, “The Dzyaloshinskii-Moriya interaction in metals”, J. Phys.: Condens. Matter 24, 086001 (2012).
[17] V. A. Chizhikov and V. E. Dmitrienko, “Microscopic description of twisted magnetic Cu2OSeO3”, J. Magn. Magn. Mater. 382, 142 (2015).
[18] Y. Y. Dai, H. Wang, P. Tao, T. Yang, W. J. Ren, and Z. D. Zhang, “Skyrmion ground state and gyration of skyrmions in magnetic nanodisks without the Dzyaloshinsky-Moriya interaction”, Phys. Rev. B 88, 054403 (2013).
[19] V. P. Gnezdilov, K.V. Lamonova, Y. G. Pashkevich, P. Lemmens, H. Berger, F. Bussy, and S. L. Gnatchenko, “Magnetoelectricity in the ferrimagnetic Cu2OSeO3:symmetry analysis and Raman scattering study”, Low Temp. Phys. 36, 550 (2010).
[20] M. I. Kobets, K. G. Dergachev, E. N. Khatsko, A. I. Rykova, P. Lemmens, H. Berger, and D. Wulferding, “Microwave absorption in the frustrated ferrimagnet Cu2OSeO3”, Low Temp. Phys. 36, 176 (2010).
[21] V. S. Kurnosov, V. P. Gnezdilov, V. V. Tsapenko, P. Lemmens, and H. Berger, “Analysis of the low-frequency spectrum of the cubic noncentrosymmetric ferrimagnet Cu2OSeO3”, Low Temp. Phys. 38, 489 (2012).
[22] I. Živković, D. Pajić, T. Ivek, and H. Berger, “Two-step transition in a magnetoelectric ferrimagnet Cu2OSeO3”, Phys. Rev. B 85, 224402 (2012).
[23] A. Bauer, A. Neubauer, C. Franz, W. Münzer, M. Garst, and C. Pfleiderer, “Quantum phase transitions in single-crystal Mn1-xFexSi and Mn1-xCoxSi: crystal growth, magnetization, ac susceptibility, and specific heat”, Phys. Rev. B 82, 064404 (2010).
[24] C. L. Huang, K. F. Tseng, C. C. Chou, S. Mukherjee, J. L. Her, Y. H. Matsuda, K. Kindo, H. Berger, and H. D. Yang, “Observation of a second metastable spin-ordered state in ferrimagnet Cu2OSeO3”, Phys. Rev. B 83, 052402 (2011).
[25] D. Hirobe, Y. Shiomi, Y. Shimada, J. I. Ohe, and E. Saitoh, “Generation of spin currents in the skyrmion phase of a helimagnetic insulator Cu2OSeO3”, J. Appl. Phys. 117, 053904 (2015).
[26] S. Seki, J.-H. Kim, D. S. Inosov, R. Georgii, B. Keimer, S. Ishiwata, and Y. Tokura, “Formation and rotation of skyrmion crystal in the chiral-lattice insulator Cu2OSeO3”, Phys. Rev. B 85, 220406(R) (2012).
[27] V. A. Sidorov, A. E. Petrova, P. S. Berdonosov, V. A. Dolgikh, and S. M. Stishov, “Comparative study of helimagnets MnSi and Cu2OSeO3 at high pressures”, Phys. Rev. B 89, 100403(R) (2014).
[28] J. Romhányi, J. Brink, and I. Rousochatzakis, “Entangled tetrahedron ground state and excitations of the magnetoelectric skyrmion material Cu2OSeO3”, Phys. Rev. B 90, 140404(R) (2014).
[29] T. Adams, A. Chacon, M. Wagner, A. Bauer, G. Brandl, B. Pedersen, H. Berger, P. Lemmens, and C. Pfleiderer, “Long wavelength helimagnetic order and skyrmion lattice phase in Cu2OSeO3”, Phys. Rev. Lett. 108, 237204 (2012).
[30] C. Pfleiderer, A. Neubauer, S. Mühlbauer, F. Jonietz, M. Janoschek, S. Leg, R. Ritz, W. Münzer, C. Franz, P. G. Niklowitz, T. Keller, R. Georgii, P. Böni, B. Binz, A. Rosch, U. K. Rößler, and A. N. Bogdanov, “Quantum order in the chiral magnet MnSi’’, J. Phys.: Condens. Matter 21, 164215 (2009).
[31] S. Seki, S. Ishiwata, and Y. Tokura, “Magnetoelectric nature of skyrmions in a chiral magnetic insulator Cu2OSeO3”, Phys. Rev. B 86, 060403 (2012)
[32] Y. Onose, Y. Okamura, S. Seki, S. Ishiwata, and Y. Tokura, “Observation of Magnetic Excitations of Skyrmion Crystal in a Helimagnetic Insulator Cu2OSeO3”, Phys. Rev. Lett. 109, 037603 (2012).
[33] A. A. Omrani, J. S. White, K. Prša, I. Živkovi´c, H. Berger, A. Magrez, Ye-Hua Liu, J. H. Han, and H. M. Rønnow, “Exploration of the helimagnetic and skyrmion lattice phase diagram in Cu2OSeO3 using magnetoelectric susceptibility”, Phys. Rev. B 89, 064406 (2014).
[34] M. Belesi, I. Rousochatzakis, H. C. Wu, H. Berger, I. V. Shvets, F. Mila, and J. P. Ansermet, “Ferrimagnetism of the magnetoelectric compound Cu2OSeO3 probed by 77Se NMR”, Phys. Rev. B 82, 094422 (2010).
[35] V. Dyadkin, K. Prša, S. V. Grigoriev, J. S. White, P. Huang, H. M. Rønnow, A. Magrez, C. D. Dewhurst, and D. Chernyshov, “Chirality of structure and magnetism in the magnetoelectric compound Cu2OSeO3”, Phys. Rev. B 89, 140409 (2014)
[36] S. V. Grigoriev, V. A. Dyadkin, D. Menze, J. Schoenes, Yu. O. Chetverikov, A. I. Okorokov, H. Eckerlebe, and S. V. Maleyev, “Magnetic structure of Fe1−xCoxSi in a magnetic field studied via small-angle polarized neutron diffraction”, Phys. Rev. B 76, 224424 (2007).
[37] X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, “Real-space observation of a two-dimensional skyrmion crystal”, Nature 465, 901 (2010).
[38] Per. Bak and M. Høgh. Jensen, “Theory of helical magnetic structures and phase transitions in MnSi and FeGe”, Solid St. Phys. 13, L881 (1980).
[39] J. S. White, I. Levatić, A. A. Omrani, N. Egetenmeyer, K. Prša, I. Živković, J. L. Gavilano, J. Kohlbrecher, M. Bartkowiak, H. Berger, and H. M. Rønnow, “Electric field control of the skyrmion lattice in Cu2OSeO3”, J. Phys.: Condens. Matter 24, 432201 (2012).
[40] J. S. White, K. Prša, P. Huang, A. A. Omrani, I. Živković, M. Bartkowiak, H. Berger, A. Magrez, J. L. Gavilano, G. Nagy, J. Zang, and H. M. Rønnow, “Electric-Field-Induced Skyrmion Distortion and Giant Lattice Rotation in the Magnetoelectric Insulator Cu2OSeO3”, Phys. Rev. Lett. 113, 107203 (2014).
[41] K. H. Miller, X. S. Xu, H. Berger, E. S. Knowles, D. J. Arenas, M. W. Meisel, and D. B. Tanner, “Magnetodielectric coupling of infrared phonons in single-crystal Cu2OSeO3”, Phys. Rev. B 82, 144107 (2010).
[42] C. Thessieu, C. Pfleiderery, A. N. Stepanov, and J. Flouquet, “Field dependence of the magnetic quantum phase transition in MnSi”, J. Phys.: Condens. Matter 9, 6677 (1997).
[43] A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P. G. Niklowitz, and P. Böni, “Topological hall effect in the A phase of MnSi”, Phys. Rev. Lett. 102, 186602 (2009).
[44] A. Bauer and C. Pfleiderer, “Magnetic phase diagram of MnSi inferred from magnetization and ac susceptibility”, Phys. Rev. B 85, 214418 (2012).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code