Responsive image
博碩士論文 etd-0526115-151031 詳細資訊
Title page for etd-0526115-151031
論文名稱
Title
以銀為主要成分之鎊線的高頻特性探討與60 GHz具彎折偶極八木天線之設計
Investigation of High Frequency Characteristics of Ag-based Wirebonds and Design of a 60 GHz Bent Dipole Yagi Antenna
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
80
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-17
繳交日期
Date of Submission
2015-06-26
關鍵字
Keywords
八木天線、60 GHz、Wire bonds、毫米波、合金線
60 GHz, Yagi antenna, Wire bonds, Millimeter wave, Alloy Wire
統計
Statistics
本論文已被瀏覽 5720 次,被下載 0
The thesis/dissertation has been browsed 5720 times, has been downloaded 0 times.
中文摘要
本論文分為兩大主題,第一個主題為研究銀的合金線(例如,銀-金-鈀和銀鈀)在高頻時的特性。在攝氏溫度20度時,銀、金和鈀的電阻率分別為1.587 Ω•cm、2.214 Ω•cm和10.54 Ω•cm。根據銀金鈀和銀鈀合金鎊線的冶金分佈,可以知道鎊線在高頻中會有急劇的變化。例如,如果鈀分佈在線的表面上時,此合金線的表面阻抗會隨著頻率上升而急劇上升。我們使用安捷倫的向量網路分析儀(VNA),量測磅線的S參數從10 MHz到67 GHz,量測範圍已遠超過其第一個共振頻率。然後再將其S參數轉換成等效電路萃取出其在不同頻率時的R,L和C的值。本論文也針對鈀的合金線分佈做射頻特性的影響做研究,如此可以分析銀鈀合金在不同比例和不同摻雜方式下的可靠度及高頻特性,有助於最佳化以銀為主要成分的合金鎊線。研究中發現,鈀的比例為3.5%時電阻的上升速率最為緩慢,可以推測鈀的分部較靠近線材的內部。本論文第二個主題為毫米波60 GHz Yagi 天線設計,我們研究引向子長度與頻率的關係,發現引向子越長針對的頻率將越低,但引向子亦為一個耦合元件長度越長時,天線與引向子之間的耦合量會增加,使阻抗匹配變差。一般的設計為了達成良好的匹配會使用較短的耦合元件,但犧牲天線的增益。而本設計透過彎折偶極天線即便加長了引向子,也能有效的控制天線與引向子之間的耦合量,使八木天線整個頻段內增益提升。量測結果,本設計在60 GHz天線增益為8.85 dB,阻抗匹配的部分從53.5 GHz~67 GHz以上都在-10 dB以下,與模擬結果相符。
Abstract
This thesis treats two main topics. The first topic is an investigation of high frequency characteristics of Ag alloys, for example, Ag-Au-Pd and Ag-Pd. At 20°C, the electrical resistivity of pure Ag, Au, and Pd is 1.587 Ω•cm, 2.214 Ω•cm, and 10.54 Ω•cm, respectively. Depending on the metallurgical distribution of Pd in the Ag-Au alloy or Ag alloy wire bonds, the high frequency behaviors of the wire bond could vary drastically. For example, if Pd is distributed mainly on the surface, the surface impedance of the Ag-alloy wire bond could be drastically increased as the frequency is increased. Agilent’s Vector Network Analyzer (VNA) was used to obtain the S-parameters up to 67 GHz, well beyond the first resonance frequency. R, L, and C were extracted by converting the measured S-parameters. We report the effects of Pd distribution on the RF characteristics (due to the skin effect) of the Pd coated/doped Ag alloy wire bonds. Analyzing the high frequency characteristics along with reliability assessment of Pd coated/doped Ag-alloys, an optimized Ag-based wirebonds can be picked. In our study, data set#8(Pd:3.5% wt) had the least increase. It may indicate that at this composition, Pd may be distributed in-ward. The second topic is design of a millimeter wave 60 GHz Yagi antenna. We studied the relationship between the director's length and frequency. We found that the length of the director affected the resonance frequency, and the director is a coupling element. Therefore, The coupling is increased when the length of the director is increase, resulting in a poor impedance matching. In order to achieve good impedance matching, the conventional design uses a shorter coupling element, but, a lower gain of the antenna. Through our bent dipole antenna design, we can effectively control the coupling between the dipole and the director. As a result, we were able to enhance the gain over the entire band. The measured gain of the Yagi antenna was 8.85 dB at 60 GHz. The measured bandwidths from return loss less than -10 dB were both within the 60 GHz band (53.5 GHz~ up to 67 GHz) ranges. It's agrees with simulation.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iv
Abstract v
目錄 vii
圖目錄 ixx
表目錄 xii
第一章 緒論 1
1.1 研究背景及動機 1
1.2 章節概要 2
1.3 合金線簡介 2
1.4 60GHz技術發展與簡介 3
第二章 銀合金之鎊線高頻特性探討 5
2.1 前言 5
2.2 晶片互連技術介紹 5
2.2.1 Flip Chip 6
2.2.2 TSV 8
2.2.3 Wire bonds 15
2.3 載板設計及量測方法 18
2.4 等效模型建立及參數萃取 22
2.5 結果與討論 25
第三章 毫米波60 GH天線設計 32
3.1 前言 32
3.2 八木天線介紹 32
3.3 PCB基板參數之萃取 37
3.3.1 萃取方法 39
3.3.2 基板參數之萃取 41
3.4 60 GHz八木天線 43
3.4.1 單頻巴倫器設計 43
3.4.2 八木天線設計 45
3.5 彎折偶極天線之八木天線 51
3.5.1 加長耦合元件之討論 51
3.5.2 彎折偶極天線之八木天線設計 53
第四章 結論及未來工作 60
參考文獻 62


圖目錄

圖2.1 封裝功能目示意圖 6
圖2.2 (a) QFN Package (b) Flip-Chip 7
圖2.3 覆晶封裝製造流程 7
圖2.4 多晶片模組 9
圖2.5 (a) 2D-IC (b) 2.5D-IC (c)3D-IC 10
圖2.6 TSV 製作流程 11
圖2.7 TSV製作流程之比較 12
圖2.8 3D-IC之訊號傳輸示意圖 13
圖2.9 TSV Channel Loss之測試(a)結構A (b)結構B 14
圖2.10 TSV Channel Loss之量測結果(a)結構A (b)結構B 14
圖2.11 Wire Bonds 側視圖 15
圖2.12 KNS IConn wire bonder 16
圖2.13 (a)楔型接合(b)球型接合 17
圖2.14 典型Wire bonds 側視圖 18
圖2.15 量測中的鎊線俯視圖 19
圖2.16 CPWG Pad俯視圖 19
圖2.17 Ag-Wire bonds 電阻值 21
圖2.18 Ag-Wire bonds 電感值 21
圖2.19 Ag-Wire bonds 電容值 21
圖2.20 Wire bonds T-model 22
圖2.21 Wire bonds -model 23
圖2.22 -model與〖 Y〗_1 〖,Y〗_2,Y_3 24
圖2.23 -model 對應的元件 24
圖2.24 Data6的S11到67GHz 26
圖2.25 Data6的電阻到67GHz 26
圖2.26 Data6的電感到67GHz 27
圖2.27 Data6的S11到5GHz 27
圖2.28 Data6的電容到5GHz 28
圖2.29 Data6的電阻到5GHz 29
圖2.30 Data6的電感到5GHz 29
圖2.31 不同Data的電阻率與3GHz的RF電阻比較圖 30
圖3.1 (a)偶極天線基本架構 (b)偶極天線電流分佈圖 33
圖3.2 偶極天線長度L (a)0.5λ(b) 1λ(c) 1.5λ 34
圖3.3 加上引向子之八木天線 (a)架構圖 (b)H-plane 35
圖3.4 加上反射子之八木天線 (a)架構圖 (b)H-plane 36
圖3.5 加上引向子及反射子之八木天線 (a)架構圖 (b)H-plane 36
圖3.6 反射子與偶極天線的距離和增益的關係圖 37
圖3.7 引向子數目與增益關係圖 37
圖3.8 (a)操作於TE10 mode之矩形波導管(b)操作於TEM mode之同軸線 38
圖3.9 典型平板傳輸線(a)帶狀線(b)微帶線(c)槽線 38
圖3.10 兩不同長度50ohm傳輸線 39
圖3.11 CPWG結構之剖面圖 41
圖3.12 (a) EM模擬結構圖 (b) 實際成品圖 41
圖3.13 兩傳輸線S21之相位差 42
圖3.14 基板之相對介電常數 42
圖3.15 單頻巴倫電流分佈及尺寸 44
圖3.16 單頻巴倫振幅不平衡 44
圖3.17 單頻巴倫相位不平衡 44
圖3.18 偶極天線加反射板 (a)正面 (b)反面 45
圖3.19 偶極天線加反射板的S11 46
圖3.20 加入引向子天線 46
圖3.21 天線反射板調整 46
圖3.22 Yagi天線詳細尺寸規格 46
圖3.23 模擬Yagi天線之S11 47
圖3.24 3D場型模擬圖 47
圖3.25 八木天線實做圖(a)正面 (b)反面 (c)與中華民國壹元硬幣比較圖 49
圖3.26 天線S11模擬與量測圖 49
圖3.27 八木天線場型與模擬比較圖 50
圖3.28 頻率對+Y方線增益曲線圖 50
圖3.29 引向子由1.3mm加長至1.5mm 51
圖3.30 1.3mm與1.5mm頻率對+Y方線增益曲線圖 52
圖3.31 不同長度的引向子對S11的影響 52
圖3.32 彎折偶極天線示意圖 53
圖3.33 偶極天線不同彎折角度對S11的影響 54
圖3.34 偶極天線不同彎折角度對H-plane場型的影響 54
圖3.35 彎折偶極天線之八木天線詳細尺寸規格 55
圖3.36 彎折偶極天線之八木天實做圖(a)正面(b)反面(c)與壹圓硬幣比較圖 55
圖3.37 Yagi與彎折偶極天線之Yagi頻率對+Y方線增益曲線圖 56
圖3.38 彎折偶極天線之八木天線的S11模擬量測比較圖 57
圖3.39 彎折偶極天線之八木天線場型模擬與量測比較圖 57
圖3.41 60 GHz天線場型量測圖 58




表目錄

表2.1 Intermediate Interconnect Level 3D-SIC Roadmap 12
表2.2 TSV Channel測試結構之相關物理參數 13
表2.3 量測鎊線的組成、線徑和電阻率 20
表2.4 萃取R、L和C,在3GHz 30
表2.5 萃取R、L和C,在20GHz 30
表2.6 不同比例銀鈀合金線電阻值多組量測比較表 31
表3.1 式(3.10)中A的各符號表示式 40
表3.2 Rogers 6202之基板參數 41
表3.3 相關文線比較 59
參考文獻 References
[1] M. Marcus and B. Pattan, "Millimeter wave propagation; spectrum management implications," Microwave Magazine, IEEE, vol. 6, pp. 54-62, 2005.
[2] 銀金鈀合金線封裝導線新秀,工商時報, 2012/08/07.
[3] http://cacm.acm.org/
[4] P.Smulders, “Exploiting the 60GHz band for local wireless multimedia access: Prospects and future directions,” IEEE Commun. Mag., vol. 2, no 3, pp 41-50, Sept. 2007.
[5] R. C. Daniels and R. W. heath, “60GHz Wireless communications : Emerging requirements and design recommedations,” IEEE Veh. Technol. Mag., vol. 2, no. 3, pp. 41-50, Sept. 2007.
[6] F. Giannetti, M. Luise, and R. Reggiannini, “Mobile and personal communications in 60GHz band: A survey,” Wireless Personal Communications, vol. 10, pp. 207 -243, 1999.
[7] W. Heinrich, "The flip-chip approach for millimeter wave packaging," Microwave Magazine, IEEE, vol. 6, pp. 36-45, 2005.
[8] Flip chip, http://en.wikipedia.org/wiki/Flip_chip
[9] W. Heinrich, et al., "Millimeter-wave characteristics of flip-chip interconnects for multichip modules," IEEE Transactions on Microwave Theory and Techniques, vol. 46, pp. 2264-2268, 1998.
[10] T. Kangasvieri, et al., "Low-loss and wideband package transitions for microwave and millimeter-wave MCMs," IEEE Transactions on Advanced Packaging, vol. 31, pp. 170-181, 2008.
[11] T. Krems, et al., "Millimeter-wave performance of chip interconnections using wire bonding and flip chip," Microwave Symposium Digest., IEEE MTT-S International, vol. 1, pp. 247-250, 1996.
[12] U. R. Pfeiffer and A. Chandrasekhar, "Characterization of flip-chip interconnects up to millimeter-wave frequencies based on a nondestructive in situ approach," IEEE Transactions on Advanced Packaging, vol. 28, pp. 160-167, 2005.
[13] W. Wei-Cheng, et al., "Design, fabrication, and characterization of novel vertical coaxial transitions for flip-chip interconnects," IEEE Transactions on Advanced Packaging, vol. 32, pp. 362-371, 2009.
[14] Rao R. Tummala and Madhavan Swaminathan, Introduction to system-on-package (SOP), pp. 3~34, 2008.
[15] 2D vs. 2.5D vs. 3D ICs, http://www.eetimes.com/design/programmable- logic/4370596/2D-vs--2-5D-vs--3D-ICs-101
[16] International Technology Roadmap for Semiconductors, http://www.itrs.ne t/reports.html
[17] K. Heegon, et al., "Measurement and analysis of a high-speed TSV channel," IEEE Trans. Compon. Packag. Manuf. Technol., vol. 2, pp. 1672-1685, 2012.
[18] Sean Cahill, Eric Sanjuan, and Lee Levine, "Development of 100+ GHz high- frequency microcoax wirebonds," 40 50 IMAPS San Diego, Oct. 8-12, 2006.
[19] K. Kuang, et al., RF and microwave microelectronics packaging, Springer (New York, 2010), pp. 25-42.
[20] E. A. Sanjuan and S. S. Cahill, "QFN-based millimeter wave packaging to 80GHz," in Signal Integrity and High-Speed Interconnects, 2009. IMWS 2009. IEEE MTT-S International Microwave Workshop Series on, 2009, pp. 9-12.
[21] wedge bond , http://www.westbond.com/wedge_bond_guide.htm
[22] Ball bonding, http://www.mtarr.co.uk/courses/topics/0268_wb/index.html
[23] QiJia Chen, A. Pagba, D. Reynoso, S. Thomas, and H. J. Toc, “Cu wire and beyond – Ag wire an alternative to Cu,” 12th EPTC, 2010, pp. 591-596.
[24] Chunjin Hanga et al., “Study of copper free air ball in thermosonic copper ball bonding,” 6th International Conference on Electronic Packaging Technology (ICEPT), 2005, pp. 414-418.
[25] Y. H. Lu Y. W. Wang, B. K. Appelt, Y.-S. Lai, and C. R. Kao, “Growth of CuAl intermetallic compounds in Cu and Cu(Pd) wire bonding,” in Proc. 61th Electronic Components and Technol. Conf. (ECTC), 2011, pp. 1481-1488.
[26] K. A. Yoo, C. Uhm, T. J. Kwon, J. S. Cho, and J. T. Moon, “Reliability study of low cost alternative Ag bonding wire with varius bond pad materials,” 11th EPTC, 2009, pp. 851-857.
[27] Liao Jun Kai, Liang Yi Hung, Li Wei Wu, Men Yeh Chiang, Don So Jiang, C.M. Huang, and Yu Po Wang, “Silver alloy wire bonding,” in Proc. 62nd Electronic Components and Technol. Conf. (ECTC), 2012, pp. 1163-1168.
[28] Chi-Hyeon Jeong, Billy Ahn, Coronado Ray, Liu Kai, Ma Phoo Pwint Hlaing, Susan Park, and Gwang Kim, “A study on the electrical characteristics of different wire materials,” International Conference on Materials and Packaging, 2013.
[29] Hai-Young Lee, "Wideband characterization of a typical bonding wire for microwave and millimeter-wave integrated circuits," IEEE Trans. On Micro wave Theory and Techniques, vol. 43, no. 1, pp. 63-68, 1995.
[30] Lih-Tyng Hwang, Glenn Rinne, and Iwona Turlik, “Analysis of a multilayered metal transmission line,” IEEE Trans. On CPMT-B, vol. 18, no. 2, May 1995.
[31] Low Dk/Df, high thermal reliability material TU-872 LK: http: //www.tuc. com. tw/products-detail.php?id=5&lang=tw
[32] C. Schuster, G. Leonhardt, and W. Fichtner, “Electromagnetic simulation of bonding wires and comparison with wide band measurements”, IEEE Trans. On Advanced Packaging, vol. 23, no. 1, pp. 69-78, February 2000.
[33] Weiping Jing, Ling Sun, and Haiyan Sun, “Modeling and parameter extraction methods of bond-wires for chip-package co-design,” 7th International Conference on Electronic Packaging Technology (ICEPT), August 2006, pp. 1-3.
[34] D. M. Pozar, Microwave Engineering, 4th ed., Wiley, New York, 2012, Chapter 4, pp. 188-194.
[35] 翁金輅,基本天線理論 2012.
[36] W. L. S W tutzman and G. A. Thiele, Antenna Theory and Design, 3rd Ed , John Wiley & Sons Inc., 2013.
[37] Microstrip, Stripline, and CPW Design, http://www.qsl.net/va3iul/.
[38] D. M. Pozar, Microwave Engineering, 3rd edition, John Wiley & Sons Inc.,1998.
[39] Wentworth, Stuart M., Fundamentals of Electromagnetics With Engineering Applications, John Wiley & Sons Inc., 2006.
[40] Chang, S.-H., Kuan, H., Wu, H.-W., Yang, R.-Y. and Weng, M.-H. "Determination of microwave dielectric constant by two microstrip line method combined with EM simulation," Microw. Opt. Technol. Lett., 48: 2199–2201,2006.
[41] S. Pinel, P. Sen, S. Sarkar, B. Perumana, D. Dawn, D. Yeh, F. Barale, M. Leung, E. Juntunen, P. Vadivelu, K. Chuang, P. Melet, G. Iyer and J. Laskar, "60 GHz single -chip CMOS digital radios and phased array solutions for gaming and ," IEEE J. Sel. Areas Commun., vol. 27, no. 8, pp. 1347–1357, Oct. 2009.
[42] B. C. Wadell, Transmission Line Design Handbook, Artech House, 1991.
[43] D.M.Pozar, "Microstrip antennas," Proc. IEEE, vol. 80, no. 1, pp. 70–91, 1992.
[44] 林昆輝,超寬頻MIMO天線設計與應用於Mini-LAN之60 GHz八木天線場型特性探討,國立中山大學電機工程研究所碩士論文, 2014.
[45] 許順盛,60-GHz CMOS射頻晶片嵌入式天線及915-MHz近身軟板印刷式天線的研究設計,國立成功大學電腦與通信工程研究所碩士論文, 2007.
[46] 李文賢,使用接地面缺陷技術於毫米波頻段QFN封裝之設計,國立中山大學通訊工程研究所碩士論文, 2013.
[47] N. Kaneda, W. R. Deal, Y. Qian, R.Waterhouse, and T. Itoh, “A broadband planar quasi-Yagi antenna,” IEEE Trans. Antennas Propag., vol. 50, no. 8, pp. 1158 – 1160, Aug. 2002.
[48] Ta-Yeh Lin, Chun-Chi Lin, Tsenchieh Chiu, Chia-Chan Chang, Hsu-Chen Cheng, and Da-Chiang Chang, "Design of 60-ghz millimeter-wave integrated chip antenna and bandpass filter using ipd technology," Microwave Conference (EuMC), 42nd European, pp. 1095 - 1098, 2012.
[49] Y.-H. Chuang, H.-L. Yue, C.-Y. Hsu, and H.-R. Chuang, “A 77-GHz integrated on-chip Yagi antenna with unbalanced-to-balanced bandpass filter using IPD technology,” in Proc. APMC, Dec. 2011, pp. 449–452.
[50] Aimeric Bisognin, Diane Titz, Fabien Ferrero, Cyril Luxey, Gilles Jacquemod, Patrice Brachat, Claire Laporte,and Hilal Ezzeddine, "D-band quasi-Yagi antenna in IPD process," Antennas and Propagation (EuCAP), 2013 7th European Conference .
[51] D.M. Pozar, Microwave and RF Design of Wireless Systems,Norwood,MA:John Wiley&Sons,Inc., 2013.
[52] L. Verma, M. Fakharzadeh, and S. Choi, “Wi-Fi on steroids: 802.11ac and 802.11ad,” IEEE Wireless Commun. Mag., vol. 20, no. 6, pp. 30–35, Dec. 2013.
[53] Ramadan A. Alhalabi and Gabriel M. Rebeiz, “High-gain Yagi-Uda antennas for millimeter-wave switched-beam systems,” IEEE Trans. Antennas Propag., vol. 57, no. 11, pp. 3672-3676, 2009.
[54] Yi Yang, King Yuk Chan, and Rodica Ramer, “60GHz pattern reconfigurable quasi-Yagi antenna –proof through computational design,” International Workshop on Antenna Technology(IWAT), pp. 53-56, 2014.
[55] Stuti Bhardwaj, K. K Tripathi, '60 GHz millimeter-wave antennas suitable foroptical OFDM application,″ International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE), vol. 2, no. 10, Oct. 2013, pp. 805-808.
[56] N. Nikolic and A. R. Weily, “Compact E-band planar quasi-Yagi antenna with folded dipole driver,” IET Journals & Magazines, vol. 4, pp. 1728 - 1734, 2010.
[57] Hwann-Kaeo Chiou, Hua-Yen Chung, Yuan-Chia Hsu, Da-Chiang Chang, and Ying-Zong Juang, “Broadband and High-Efficiency Power Amplifier that Integrates CMOS and IPD Technology,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 3, no. 9, pp. 1489–1497, 2013.
[58] H.-K. Chen, U.-C. Hsu, T.-Y. Lin, D.-C. Chang, Y.-Z. Juang, and S.-S. Lu, “CMOS wideband LNA design using integrated passive device,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun, pp. 673–676, 2009.
[59] Yi-Chieh Lin, Wen-Hsian Lee, Tzyy-Sheng Horng, and Lih-Tyng Hwang, “Full chip-package-board co-design of broadband qfn bonding transition using backside via and defected ground structure,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 4, no. 9, pp. 1470–1479, 2014.
[60] D. K. Cheng, Field and Wave Electromagnetics , 2/e, Addison-Wesley Publishing Company, 1989.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.133.108.241
論文開放下載的時間是 校外不公開

Your IP address is 3.133.108.241
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code