Responsive image
博碩士論文 etd-0526115-152907 詳細資訊
Title page for etd-0526115-152907
論文名稱
Title
鎳摻雜對新穎材料Cu2OSeO3相變化效應研究
Effect of Ni substitution on the Skyrmion phase in Cu2OSeO3
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
78
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-06
繳交日期
Date of Submission
2015-06-28
關鍵字
Keywords
摻雜效應、相圖、手性磁性、亞鐵磁性
phase diagram, Doping effect, Cu2OSeO3, chiral magnetic, skyrmion
統計
Statistics
本論文已被瀏覽 5723 次,被下載 494
The thesis/dissertation has been browsed 5723 times, has been downloaded 494 times.
中文摘要
手性(chiral)磁性是很特別的物理性質,例如自旋冰/液體磁序、拓樸絕緣體和磁電偶..等,都與其有所關聯。而這些獨特的現象中,最讓人感興趣的地方在於存在著不尋常的自旋排列。
  而本篇研究的主要樣品Cu2OSeO3本身就是為手性磁結構,而且還具有很特別的磁矩螺旋排列稱為skyrmion。而Cu2OSeO3在溫度56K左右時具有亞鐵磁性,而當增添適度的外加磁場,會從螺旋態(helical state)經過中間的skyrmion phase到達錐形態(conical state)。我們主要在研究等價離子的摻雜效應對Cu2OSeO3中skyrmion現象會有什麼影響,利用固態合成法製作多晶樣品(Cu1-xNix)2OSeO3 (x = 0.0 ~ 0.1),並進行一連串的磁性研究。
  磁性方面,從ac -T的量測中發現隨著鎳摻雜比例的提升,轉變溫度朝低溫偏移,且注意到鎳摻雜比例超過0.03時,有第2個尖峰的產生。之後從M-H的量測中,隨著鎳摻雜比例提升強度沒明顯的改變,我們推測出Cu¬(I)和Cu(II)兩個位置,鎳都會進行取代。最後進行一系列的不同溫度下χ´ac-H的量測,我們畫出一系列的相圖,並進行比較,發現幾個明顯的改變。首先觀察到在T = 45 K時Conical state的邊界有些微增加,從806.22 Oe (x = 0) 變成 996.42 Oe (x = 0.1),而Helical state邊界值隨著摻雜增加有一些減少。最令人感興趣的是skyrmion系統受到Ni強烈的影響,隨著摻雜的增加直到x = 0.06,都有系統的讓skyrmion區域增大。當摻雜濃度超過x = 0.08時發現具有分裂的現象。從我們實驗結果發現磁性離子對Cu2OSeO3的Cu(I)和Cu(II)形成強大的磁性交互作用,從相圖中也可以看到對skyrmion相產生影響。
Abstract
Chiral magnetic lattice shows exotic physical properties such as spin ice/spin liquid order, topological insulators, magneto-electric coupling, and so on. Essentially, all these fascinating phenomena have strongly related to their peculiar spin arrangement, i.e. spiral, conical and helical. The chiral magnetic lattice of Cu2OSeO3 exhibit such kind of unique magnetic ordering where spins configured into a vortex-like pattern called as skyrmion. Cu2OSeO3 exhibits ferrimagnetic ordering around 56 K. Below magnetic ordering, under moderate magnetic field the spin orientation transfer from helical to conical phase via intermediate skyrmions phase. In this thesis, we study the influence of isovalent doping on the Skyrmion phase of Cu2OSeO3.
The polycrystalline (Cu1-XNiX)2OSeO3 (x = 0.0 to 0.1) samples were prepared by standard solid-state method. Temperature (T) and field (H) dependent AC susceptibility (ac) technique was employed to study the H-T phase diagram. From ac vs. T measurement, we found the transition temperature (TC) shifts to low temperature as the Ni doping level increases. A second magnetic peak noticed below TC for doping concentration x > 0.03. Field dependent magnetization (M-H) curves indicate the nominal change of saturation magnetization, which hints the Ni randomly occupy the Cu(I) and Cu(II) positions. H-T phase diagram for all the samples constructed using the ac vs. H curves at the different temperatures. Several significant changes noticed from the H-T phase diagram. First, the conical phase boundary enhances from 806.22 Oe (x = 0) to 996.42 Oe (x = 0.1) at 45 K, whereas small decrease in helical boundary noticed with increase of Ni doping concentration. Interestingly, Ni doping strongly influence the skyrmion zone, the skyrmion zone systematically enhances with the doping concentration x = 0.06. For x ≥ 0.08, a split in the skyrmion zone has been noticed. Our detailed experimental results signifies that the magnetic ion doping in the Cu2OSeO3 strongly modulate the complex magnetic interaction of Cu(I) and Cu(II) that stabilize the skyrmion phase in wider temperature interval in the H-T phase diagram.
目次 Table of Contents
論文審定書+i
論文公開授權書+iii
致謝+iv
論文摘要+v
Abstract+vi
目錄+viii
圖目錄+x
表目錄+xiii
第一章:簡介+1
1-1 Skyrmion+1
1-2 Cu2OSeO3簡介+7
1-3研究動機+15
第二章:實驗儀器與方法+17
2-1 粉末繞射分析儀D2 Phaser+17
2-2 磁性量測儀器+19
2-2-1 超導量子干涉磁量儀+19
2-2-2 磁性量測方法+22
第三章:實驗結果與討論+24
3-1 (Cu1-xNix)2OSeO¬3,x = 0 to 0.1樣品製備+24
3-2 (Cu1-xNix)2OSeO¬3,x = 0 to 0.1 X-ray結構分析+26
3-3 磁性實驗結果與討論+35
第四章:結論+55
參考文獻+57
參考文獻 References
[1] U. K. Rößler1, A. N. Bogdanov, and C. Pfleiderer, “Spontaneous skyrmion ground states in magnetic metals’’, Nature 442, 797 (2006).
[2] C. Thessieu, C. Pfleiderery, A. N. Stepanov, and J. Flouquet, “Field dependence of the magnetic quantum phase transition in MnSi”, J. Phys.: Condens. Matter 9, 6677 (1997).
[3] C. Pfleiderer, A. Neubauer, S. Mühlbauer, F. Jonietz, M. Janoschek, S. Leg, R. Ritz, W. Münzer, C. Franz, P. G. Niklowitz, T. Keller, R. Georgii, P. Böni, B. Binz, A. Rosch, U. K. Rößler, and A. N. Bogdanov, “Quantum order in the chiral magnet MnSi”, J. Phys.: Condens. Matter 21, 164215 (2009).
[4] C. Pfleiderer, T. Adams, A. Bauer, W. Biberacher, B. Binz,F. Birkelbach, P. Böni, C. Franz, R. Georgii, M. Janoschek, F. Jonietz, T. Keller, R. Ritz, S. Mühlbauer, W. Münzer, A. Neubauer, B. Pedersen, and A. Rosch, “Skyrmion lattices in metallic andsemiconducting B20 transition metalcompounds”, J. Phys.: Condens. Matter 22, 164207 (2010).
[5] X. Z. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W. Z. Zhang, S. Ishiwata, Y. Matsui, and Y. Tokura, “Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe”, Nat. Mater. 10, 106 (2011).
[6] S. Seki, X. Z. Yu, S. Ishiwata, and Y. Tokura, “Observation of skyrmions in a multiferroic Material”, Science 336, 198 (2012).
[7] S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, “Skyrmion Lattice in a Chiral Magnet”, Science 323, 915 (2009).
[8] X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, “Real-space observation of a two-dimensional skyrmion crystal”, Nature 465, 901 (2010).
[9] A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P. G. Niklowitz, and P. Böni, “Topological hall effect in the A phase of MnSi”, Phys. Rev. Lett. 102, 186602 (2009).
[10] A. Bauer and C. Pfleiderer, “Magnetic phase diagram of MnSi inferred from magnetization and ac susceptibility”, Phys. Rev. B 85, 214418 (2012).
[11] S. V. Demishev, V. V. Glushkov, I. I. Lobanova, M. A. Anisimov, V. Yu. Ivanov, T. V. Ishchenko, M. S. Karasev, N. A. Samarin, N. E. Sluchanko, V. M. Zimin, and A. V. Semeno, “Magnetic phase diagram of MnSi in the high-field region”, Phys. Rev. B 85, 045131 (2012).
[12] Per. Bak and M. Høgh. Jensen, “Theory of helical magnetic structures and phase transitions in MnSi and FeGe”, Solid St. Phys. 13, L881 (1980).
[13] W. Münzer, A. Neubauer, T. Adams, S. Mühlbauer, C. Franz, F. Jonietz, R. Georgii, P. Böni, B. Pedersen, M. Schmidt, A. Rosch, and C. Pfleiderer, “Skyrmion lattice in the doped semiconductor Fe1−xCoxSi”, Phys. Rev. B 81, 041203 (2010).
[14] V. P. Gnezdilova, K. V. Lamonova, Yu. G. Pashkevich, P. Lemmens, H. Berger, F. Bussy, and S. L. Gnatchenko, “Magnetoelectricity in the ferrimagnetic Cu2OSeO3: symmetry analysis and Raman scattering study”, Low Temp. Phys. 36, 550 (2010).
[15] M. I. Kobets, K. G. Dergachev, E. N. Khatsko, A. I. Rykova, P. Lemmens, D. Wulferding, and H. Berger, “Microwave absorption in the frustrated ferrimagnet Cu2OSeO3”, Low Temp. Phys. 36, 176 (2010).
[16] I. Živković, D. Pajić, T. Ivek, and H. Berger, “Two-step transition in a magnetoelectric ferrimagnet Cu2OSeO3”, Phys. Rev. B 85, 224402 (2012).
[17] Jan-Willem G. Bos, Claire V. Colin, and Thomas T. M. Palstra, “Magnetoelectric coupling in the cubic ferrimagnet Cu2OSeO3”, Phys. Rev. B 78, 094416 (2008).
[18] K. H. Miller, X. S. Xu, H. Berger, E. S. Knowles, D. J. Arenas, M. W. Meisel, and D. B. Tanner, “Magnetodielectric coupling of infrared phonons in single-crystal Cu2OSeO3”, Phys. Rev. B 82, 144107 (2010).
[19] M. Belesi, I. Rousochatzakis, M. Abid, U. K. Rößler, H. Berger and J.-Ph. Ansermet, “Magnetoelectric effects in single crystals of the cubic ferrimagnetic helimagnet Cu2OSeO3”, Phys. Rev. B 85, 224413 (2012).
[20] T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, and Y. Tokura, “Magnetocapacitance effect in multiferroic BiMnO3”, Phys. Rev. B 67, 180401 (2003).
[21] G. Lawes, A. P. Ramirez, C. M. Varma, and M. A. Subramanian, “Magnetodielectric Effects from Spin Fluctuations in Isostructural Ferromagnetic and Antiferromagnetic Systems”, Phys. Rev. Lett. 91, 257208 (2003).
[22] T. Katsufuji, S. Mori, M. Masaki, Y. Moritomo, N. Yamamoto, and H. Takagi, “Dielectric and magnetic anomalies and spin frustration in hexagonal RMnO3 (R=Y, Yb, and Lu)”, Phys. Rev. B 64, 104419 (2001).
[23] J. S. White, I. Levatić, A. A. Omrani, N. Egetenmeyer, K. Prša, I. Živković, J. L. Gavilano, J. Kohlbrecher, M. Bartkowiak, H. Berger, and H. M. Rønnow, “Electric field control of the skyrmion lattice in Cu2OSeO3”, J. Phys.: Condens. Matter 24, 432201 (2012).
[24] J. S. White, K. Prša, P. Huang, A. A. Omrani, I. Živković, M. Bartkowiak, H. Berger, A. Magrez, J. L. Gavilano, G. Nagy, J. Zang, and H. M. Rønnow, “Electric-Field-Induced Skyrmion Distortion and Giant Lattice Rotation in the Magnetoelectric Insulator Cu2OSeO3”, Phys. Rev. Lett. 113, 107203 (2014).
[25] T. Adams, A. Chacon, M. Wagner, A. Bauer, G. Brandl, B. Pedersen, H. Berger, P. Lemmens, and C. Pfleiderer, “Long-Wavelength Helimagnetic Order and Skyrmion Lattice Phase in Cu2OSeO3”, Phys. Rev. Lett. 108, 237204 (2012).
[26] M. C. Langner, S. Roy, S. K. Mishra, J. C. T. Lee, X. W. Shi, M. A. Hossain, Y. D. Chuang, S. Seki, Y. Tokura, S. D. Kevan, and R.W. Schoenlein, “Coupled Skyrmion Sublattices in Cu2OSeO3”, Phys. Rev. Lett. 112, 167202 (2014).
[27] A. Bauer, A. Neubauer, C. Franz, W. Münzer, M. Garst, and C. Pfleiderer, “Quantum phase transitions in single-crystal Mn1−xFexSi and Mn1−xCoxSi: Crystal growth,magnetization, ac susceptibility, and specific heat”, Phys. Rev. B 82, 064404 (2010).
[28] S. V. Grigoriev, V. A. Dyadkin, D. Menze, J. Schoenes, Yu. O. Chetverikov, A. I. Okorokov, H. Eckerlebe, and S. V. Maleyev, “Magnetic structure of Fe1−xCoxSi in a magnetic field studied via small-angle polarized neutron diffraction”, Phys. Rev. B 76, 224424 (2007).
[29] K. Kohn, “A new ferrimagnet Cu2SeO4”, J. Phys. Soc. Jpn. 42, 2065 (1977).
[30] N. J. Ghimire, “Complex magnetism in noncentrosymmetric magnets”, PhD diss., University of Tennessee (2013).
[31] Y. Tokura, S. Seki, and N. Nagaosa, “Multiferroics of spin origin”, Rep. Prog. Phys. 77, 076501 (2014).
[32] A. A. Omrani, J. S. White, K. Prša, I. Živković, H. Berger, A. Magrez, Ye-Hua Liu, J. H. Han, and H. M. Rønnow, “Exploration of the helimagnetic and skyrmion lattice phase diagram in Cu2OSeO3 using magnetoelectric susceptibility”, Phys. Rev. B 89, 064406 (2014).
[33] K. Kohn, S. I. Akimoto, K. Inoue, K. Asai, and O. Horie, “Crystal structure and magnetic properties of MnSeO3, CoSeO3, NiSeO3 and CuSeO3”, J. Phys. Soc. Jpn. 38, 587 (1975).
[34] C. L. Huang, K. F. Tseng, C. C. Chou, S. Mukherjee, J. L. Her, Y. H. Matsuda, K. Kindo, H. Berger, and H. D. Yang, “Observation of a second metastable spin-ordered state in ferrimagnet Cu2OSeO3”, Phys. Rev. B 83, 052402 (2011).
[35] M. Belesi, I. Rousochatzakis, H. C. Wu, H. Berger, I. V. Shvets, F. Mila, and J. P. Ansermet, “Ferrimagnetism of the magnetoelectric compound Cu2OSeO3 probed by 77Se NMR”, Phys. Rev. B 82, 094422 (2010).
[36] S. V. Grigoriev, D. Chernyshov, V. A. Dyadkin, V. Dmitriev, S. V. Maleyev, E. V. Moskvin, D. Menzel, J. Schoenes, and H. Eckerlebe, “Crystal Handedness and Spin Helix Chirality in Fe1-xCoxSi”, Phys. Rev. Lett. 102, 037204 (2009).
[37] H. Wilhelm, M. Baenitz, M. Schmidt, C. Naylor, R. Lortz, U. K. Rößler , A. A. Leonov, and A. N Bogdanov, “Confinement of chiral magnetic modulations in the precursor region of FeGe”, J. Phys.: Condens. Matter 24, 294204 (2012).
[38] Y. Onose, Y. Okamura, S. Seki, S. Ishiwata, and Y. Tokura, “Observation of Magnetic Excitations of Skyrmion Crystal in a Helimagnetic Insulator Cu2OSeO3”, Phys. Rev. Lett. 109, 037603 (2012).
[39] S. Seki, S. Ishiwata, and Y. Tokura, “Magnetoelectric nature of skyrmions in a chiral magnetic insulator Cu2OSeO3”, Phys. Rev. B 86, 060403 (2012).
[40] S. Seki, J. H. Kim, D. S. Inosov, R. Georgii, B. Keimer, S. Ishiwata, and Y. Tokura, “Formation and rotation of skyrmion crystal in the chiral-lattice insulator Cu2OSeO3”, Phys. Rev. B 85, 220406 (2012).
[41] J. H. Yang, Z. L. Li, X. Z. Lu, M. H. Whangbo, S. H. Wei, X. G. Gong, and H. J. Xiang, “Strong Dzyaloshinskii-Moriya Interaction and Origin of Ferroelectricity in Cu2OSeO3”, Phys. Rev. Lett. 109, 107203 (2012).
[42] V. Dyadkin, K. Prša, S. V. Grigoriev, J. S. White, P. Huang, H. M. Rønnow, A. Magrez, C. D. Dewhurst, and D. Chernyshov, “Chirality of structure and magnetism in the magnetoelectric compound Cu2OSeO3”, Phys. Rev. B 89, 140409 (2014).
[43] V. A. Sidorov, A. E. Petrova, P. S. Berdonosov, V. A. Dolgikh, and S. M. Stishov, “Comparative study of helimagnets MnSi and Cu2OSeO3 at high pressures”, Phys. Rev. B 89, 100403 (2014).
[44] I. Živković, J. S. White, H. M. Rønnow, K. Prša, and H. Berger, “Critical scaling in the cubic helimagnet Cu2OSeO3”, Phys. Rev. B 89, 060401 (2014).
[45] D. Hirobe, Y. Shiomi, Y. Shimada, J.-ichiro Ohe, and E. Saitoh, “Generation of spin currents in the skyrmion phase of a helimagnetic insulator Cu2OSeO3”, J. Appl. Phys. 117, 053904 (2015).
[46] J. Romhányi, J. van den Brink, and I. Rousochatzakis, “Entangled tetrahedron ground state and excitations of the magnetoelectric skyrmion material Cu2OSeO3”, Phys. Rev. B 90, 140404 (2014).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code