Responsive image
博碩士論文 etd-0526115-161822 詳細資訊
Title page for etd-0526115-161822
論文名稱
Title
以多孔構造實現聲學斗篷之聲音遮蔽效應
Using Perforated plate Structures to Realize the Wave Invisible Effect of Acoustic Cloak
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-09-12
繳交日期
Date of Submission
2015-07-02
關鍵字
Keywords
超穎材料、匿蹤、聲學斗篷
Perforated Plastic Plate, Acoustic Shadowing, Acoustic Cloak
統計
Statistics
本論文已被瀏覽 5756 次,被下載 80
The thesis/dissertation has been browsed 5756 times, has been downloaded 80 times.
中文摘要
聲學斗篷具有將聲波傳遞路徑彎曲或扭曲的能力,應用此特性,可作為聲學上的隱蔽材料。其原理為當聲波經過聲學斗篷時,由於特殊設計的材料結構影響,使得聲波傳播方向改變,讓偵測者接收不到訊號而誤認為目標物不存在。聲學斗篷雖然擁有優異的隱蔽匿蹤功能,然而在於結構排列設計時,常受到材料性質的聲學匹配限制,於實務製作上無法突破。近年來由於科技日新月異,科學家們致力於超穎材料的研究,開發出一種以人工調配,製成具有可控制材料性質的技術,聲學斗篷的實用性於焉產生。
為了驗證聲學斗篷對聲音隱蔽的可行性,本研究將進行聲學斗篷的設計及製作,以塑膠材料穿孔板為基材,藉由不同孔徑大小排列組合而成試體,因此變化材料的等效聲阻抗,滿足建立非等向性介質的超穎材料的需求。
實驗中,使用半無響室量測試體的反射及穿透聲場,並量測一個尺寸大小相同的反射體當為參考聲場。在相同環境及量測條件設定下,進行聲學斗篷試體之聲場量測,同時分析兩者聲場陰影區的變化,比較聲場的差異性。結果顯示,在聲學斗篷試體的穿透聲場中,其陰影區左側處沒有出現聲場聚集現象。而在反射聲場的右側陰影區內,卻發現聲學斗篷的聲壓值大於反射體的聲壓值。由此證得,聲源在自由音場傳播過程中,遇有聲學斗篷材料介質,會讓傳遞路徑偏移轉彎,達到斗篷下的目標物匿蹤效果。
Abstract
The acoustic cloak controls sound waves and it has ability to curve and twist sound waves as well. When sound waves pass through the acoustic cloak, it will be curved and surround in acoustic cloak, moreover, the sound waves avoid contents on the inside. Let the sound waves misunderstand there is no object exist.
This study elaborates on acoustic cloak model which is designed by perforated plastic plates. Utilizing the different perforation diameters of plastic plate structural units to change the effective acoustic impedance value and the anisotropic medium is constructed to establish the acoustic cloak model.
The study concerns on two experiments. The purpose of the first experiment validates that whether the acoustic cloak has covering effect toward the acoustic field. The experimental results and the theoretical solutions not only describe the same tendency but suggests the feasibility of the acoustic cloak. On the other hand, the second experiment explores energy dissipation of acoustic cloak. It is concluded that most of the energy of positions have merely change when install the acoustic cloak. Therefore, this experiment confirms that if the acoustic cloak device can be use as military equipment to achieve stealth at the specific frequency. The acoustic cloak model was experimented in semi-anechoic chamber. Based on the actual acoustic field measurement not only to validate the observation of acoustic shadowing but to evaluate the acoustic cloak shadowing effect and the feasibility of design concept, so that there are practical applications on acoustic shadowing research, development and production in the future.
目次 Table of Contents
誌謝+i
中文摘要+ii
英文摘要+iii
目錄+iv
圖目錄+vi
表目錄+viii
第一章 緒論+1
1-1 前言+1
1-2 研究動機與目的+3
1-3 文獻回顧+4
1-4 研究方法+8
1-5 論文結構+8
第二章 研究基本理論+12
2-1 聲學相關理論+12
2-2 聲學超穎材料+14
2-3 各幾何形狀之聲學斗篷+14
2-4 聲學斗篷設計理論+16
第三章 實驗架構與量測+25
3-1 聲學斗篷之設計+25
3-2 聲場量測之半無響室+28
3-3 實驗儀器架構+29
3-4 實驗量測+30
3-5 訊號處理方式+31
第四章 實驗結果與討論+42
4-1 反射體的量測結果+42
4-2 聲學斗篷的量測結果+43
4-3 分析比較+44
第五章 結論與未來展望+50
5-1 結論+50
5-2 未來展望+50
參考文獻+51
附錄 A:聲學斗篷公式推導+55
附錄 B:設計非等向性材料公式+61

圖目錄
圖1.1 光子晶體負折射平板(正方晶格)透鏡的次波長成像+9
圖1.2 聲子晶體的排列與聚焦行為,其中X_f為聚焦點+9
圖1.3波傳播的軌跡經過一藍色壓縮區的行為+10
圖1.4 波導經過一遮蔽區的行為+10
圖1.5 二維隱形斗篷示意圖+10
圖1.6 三維隱形斗篷示意圖+11
圖1.7 多層流狀體隱形斗篷示意圖+11
圖2.1 光波〖45〗^0入射於平坦地面+22
圖2.2 光波〖45〗^0入射於不平坦地面+22
圖2.3 光學斗篷遮蔽後之入射角等於反射角+22
圖2.4 遮蔽區示意圖+23
圖2.5 座標轉換換後的波傳路徑示意圖+23
圖2.6 複合材料的排列與波傳路徑示意圖+24
圖2.7 單一區間阻抗板+24
圖3.1 遮蔽區示意圖+34
圖3.2 聲學斗篷上視圖與正視圖+35
圖3.3 聲學斗篷實體上視圖+36
圖3.4 聲學斗篷實體的全視圖+36
圖3.5 塑膠板反射體實體+37
圖3.6 十二面體點聲源+37
圖3.7 電子式校正器+37
圖3.8 電容式麥克風+38
圖3.9 五軸定位系統+38
圖3.10 實驗流程圖+39
圖3.11 聲影區示意圖+40
圖3.12 聲學斗篷被覆反射體之量測示意圖+40
圖3.13 實驗量測架設圖+41
圖4.1 量測4 kHz之正弦波訊號+47
圖4.2 麥克風量測聲源4 kHz的頻譜+47
圖4.3 反射體之原始訊號的反射與穿透聲場分佈+48
圖4.4 補相處理後之反射體的反射與穿透聲場分佈+48
圖4.5 聲學斗篷的反射與穿透之原始訊號聲場分佈+49
圖4.6 補相處理後之聲學斗篷的反射與穿透聲場分佈+49
圖A1 座標系轉換示意圖+60
圖A2 遮蔽區示意圖+60
圖B1 波傳播經過壓縮區的扭轉行為示意圖+64
圖B2 複合材料的排列與波傳路徑示意圖+64

表目錄
表3.1 在z方向上的阻抗板設計值+33
表3.2 聲學斗篷設計值+33
表4.1 反射體聲場+45
表4.2 聲學斗篷遮蔽後聲場+46
參考文獻 References
1. D. Myhra, “Northrop Tests Hitler's 'Stealth' Fighter,” Aviation History, 19(6), p. 11 (2009)
2. S. John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattices,” Phys. Rev. Lett. 58, p.2486 (1987)
3. E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics, ” Phys. Rev. Lett., 58, p.2059 (1987)
4. 欒丕綱、陳啓昌著,光子晶體,五南,台北市,2005年。
5. A. Climente, D. Torrent and J. Sánchez-Dehesa, “Sound Focusing by Gradient Index Sonic Lenses,” Appl. Phys. Lett., 97(10), pp. 104103-1~104103-3 (2010)
6. U. Leonhardt, ”Optical Conformal Mapping,” Science, 312(5781), pp. 1777~ 1780 (2006)
7. R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser and S. Schultz, “Microwave Transmission Through a Two-Dimensional, Isotropic, Left-Handed Metamaterial,” Appl. Phys. Lett., 78(4), pp. 489~491 (2001)
8. J. B. Pendry and J. Li, “An Acoustic Metafluid: Realizing a Broadband Acoustic Cloak,” New J. Phys, 10(11), pp. 115032-1~115032-10 (2008)
9. 林宜賢,聲子晶體結構應用於水中吸音材料之可行性研究,中山大學機械與機電工程研究所碩士論文,高雄市,2005年。
10. V. G. Veselago, “The Electorodynamics of Substances with Simultaneously Negative Values of ϵ and μ,” Soviet phys., 10(4), pp. 509~514 (1967)
11. J. B. Pendry, A. J. Holden, W. J. Stewart and I. Youngs, “Extremely Low Frequency Plasmons in Metallic Mesostructures,” Phys. Rev. Lett., 76(25), pp. 4773~4776 (1996)
12. Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan and P. Sheng, “Locally Resonant Sonic Materials,” Science, 289(5485), pp. 1734~1736 (2000)
13. R. A. Shelby, D. R. Smith and S. Schultz, ”Experimental Verification of a Negative Index of Refraction,” Science, 292(5514), pp. 77~79 (2001)
14. J. B. Pendry, D. Schurig and D. R. Smith., “Controlling Electromagnetic Fields,” Science, 312(5781), pp. 1780~1782 (2006)
15. D. Torrent, A. Håkansson, F. Cervera and J. Sánchez-Dehesa, “Homogenization of Two-Dimensional Clusters of Rigid Rods in Air,” Phys. Rev. Lett., 96, pp. 204302-1~204302-4 (2006)
16. D. Torrent and J. Sánchez-Dehesa, “Acoustic Cloaking In Two Dimensions: A Feasible Approach,” New J. Phys., 10(6), pp. 063015-1~063015-10 (2008)
17. N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun and X. Zhang, “Ultrasonic Metamaterials with Negative Modulus,” Nature Mater, 5, pp. 452~ 456 (2006)
18. H. Chen and C. T. Chan, “Acoustic Cloaking in Three Dimensions Using Acoustic Metamaterials,” Amer Inst of Physics, 91(18), pp. 183518-1~183518-3 (2007)
19. Y. Huang, Y. Feng and T. Jiang, “Electromagnetic Cloaking by Layered Structure of Homogeneous Isotropic Materials,” Opt. Express, 15, pp. 11133-1~11133-9 (2007)
20. Y. Cheng, F. Yang, J. Y. Xu and X. J. Liu, “A Multilayer Structured Acoustic Cloak with Homogeneous Isotropic Materials,” Appl. Phys. Lett., 92, pp. 151913-1~151913-3 (2008)
21. N. A. Zharova, I. V. Shadrivov and Y. S. Kivshar, “Inside-out Electromagnetic Cloaking,” Optical Society of America, 16(7), pp. 4615~4620 (2008)
22. W. Zhu, C. Ding and X. Zhao, “A Numerical Method for Designing Acoustic Cloak with Homogeneous Metamaterials,” Appl. Phys. Lett., 97, pp. 131902-1~131902-3 (2010)
23. A. N. Norris and A. J. Nagy, “Acoustic Metafluids Made from Three Acoustic Fluids,” J. Acoust. Soc. Am., 128(4), pp. 1606~1616 (2010)
24. S. Guenneau, C. Amra and D. Veynante, “Transformation Thermodynamics: Cloaking and Concentrating Heat Flux,” Optical Society of America, 20(7), pp. 8207~8218 (2012)
25. T. Han, T. Yuan, B. Li and C. W. Qiu, “Homogeneous Thermal Cloak with Constant Conductivity and Tunable Heat Localization,” Scientific reports, 3, pp. 1593-1~1593-5 (2013)
26. S. A. Cummer and D. Schurig, “One Path to Acoustic Cloaking,” New J. Phys., 9(45), pp. 37675-1~37675-8 (2007)
27. D. Torrent and J. Sánchez-Dehesa, “Broadband Acoustic Cloaks Based on the Homogenization of Layered Materials,” Wave Motion, 48(6), pp. 497~504 (2011)
28. 蔡國隆、王光賢、涂聰賢著,聲學原理與噪音量測控制,全華,台北市,2004年。
29. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui and D. R. Smith, “Broadband Ground-Plane Cloak,” Science, 323, pp. 366~369 (2009)
30. L. L. Beranek, Acoustics, U.S.A: Amer Inst of Physics, (1986)
31. E. J. Post, Formal Structure of Electromagnetics, New York: Wiley, p. 119, (1962)
32. B. I. Popa, L. Zigoneanu and S. A. Cummer, “Experimental Acoustic Ground Cloak in Air,” Phys. Rev. Lett., 106(25), pp. 253901-1~253901-4 (2011)
33. 宋沛璟,使用有限元素法分析二維聲子晶體波傳特性,中山大學機械與機電工程研究所碩士論文,高雄市,2006年。
34. 黃柏瑋,使用邊界元素法研究聲子晶體聲場特性,中山大學機械與機電工程研究所碩士論文,高雄市,2007年。
35. L. W. Cai and J. Sánchez-Dehesa, “Analysis of Cummer-Schurig Acoustic Cloaking,” New J. Phys., 9(12), pp. 450-1~450-10 (2007)
36. 侯志欽著,聲學原理與多媒體音訊科技,台灣商務印書館股份有限公司,台北市,2007年。
37. 林招焯、蘇柏嘉、楊旭光、鄭錦文及夏紹毅,2014,「利用聲波超常材料透鏡達成正向入射聲波偏折效應之研究」,中華民國振動與噪音工程學會第22屆學術研討會,6月7日,彰化,台灣,No. 60
38. Y. Urzhumov, F. Ghezzo, J. Hunt and D. R. Smith, “Acoustic Cloaking Transformations from Attainable Material Properties,” New J. Phys., 12(7), pp. 073014-1~073014-21 (2010)
39. D. Torrent and J. Sánchez-Dehesa, “Anisotropic Mass Density by Radially Periodic Fluid Structures,” Phys. Rev. Lett., 105, pp. 174301-1~174301-4 (2010)
40. L. W. Cai, “Multiple Scattering in Single Scatterers,” J. Acoust. Soc. Am., 115(3), pp. 986~995 (2004)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code