Responsive image
博碩士論文 etd-0526116-220750 詳細資訊
Title page for etd-0526116-220750
論文名稱
Title
比較顆粒活性碳與奈米碳管吸附水中過氯酸鹽之研究
Comparison of granular activated carbon and carbon nanotubes for adsorption of perchlorate from aqueous solution
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
116
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-02
繳交日期
Date of Submission
2016-06-26
關鍵字
Keywords
過氯酸鹽、吸附、粒狀活性碳、奈米碳管、吸附模式
Adsorption model, Perchlorate, Adsorption, GAC, CNT
統計
Statistics
本論文已被瀏覽 5697 次,被下載 0
The thesis/dissertation has been browsed 5697 times, has been downloaded 0 times.
中文摘要
本研究旨在比較顆粒活性碳與奈米碳管吸附處理水中微量過氯酸鹽,探討吸附過氯酸鹽效率、及操作條件對吸附之影響效應。本研究將進行等溫平衡試驗及吸附模式評估,了解這二種吸附劑吸附過氯酸鹽的機制。再利用動力實驗計算吸附劑對過氯酸鹽之熱力學常數。
實驗結果顯示等溫吸附試驗控制在恆溫5–45℃,粒狀活性碳吸附量為28.2–33.9 mg/g,奈米碳管吸附量為10.0 – 13.6 mg/g,吸附數據適用Langmuir及Freundlich模式。在吸附過氯酸鹽之動力試驗顯示二種吸附劑約在8小時達到平衡,吸附量隨著過氯酸鹽濃度增加及離子強度減少而增加。動力實驗結果顯示都可以Modified Freundlich equation、Pseudo-1st-order equation、Pseudo-2nd-order equation三種模式描述。奈米碳管熱力學參數ΔGo值為- 0.77 ~ - 0.8 kcal/mol、△Ho為- 0.6 kcal/mol,△So為0.53~0.72 cal/mol-K 。粒狀活性碳熱力學參數ΔGo值為- 0.99 ~ - 1.11 kcal/mol、△Ho為- 0.6 kcal/mol,△So為1.21 ~ 1.84 cal/mol-K,顯示粒狀活性碳與奈米碳管之吸附過程屬於自發性放熱反應。
Abstract
This study is focused to compare the adsorption of perchlorate by using granular activated carbon (GAC) and carbon nanotubes (CNT) in synthetically solutions, and to investigate their adsorption capacities and the effects of operation conditions on these adsorptions. In this study GAC and CNT as adsorbents were be carried to isothermal equilibrium and to obtain adsorption models for understanding the adsorption mechanisms of perchlorate by GAC and CNT. Finally thermodynamics and related constants of perchlorate adsorbed by GAC and CNT were discussed with the experimental results of kinetic adsorption.
Experimental results showed the adsorption capacities of perchlorate by GAC and CNT were at 28.2–33.9 mg/g and 10.0 – 13.6 mg/g respectively under a thermostat range 5-45 ℃ of isothermal tests. The all tests results of GAC and CNT were all suitable Langmuir and Freundlich models. In experiments on adsorption of perchlorate by two kinds of adsorbents, results show that dynamics approximately 8 hours to reach equilibrium of adsorption. The adsorption increased and decreased with the increased ionic strengths and concentrations of perchlorate.
The results of kinetic study showed the adsorption of perchlorate by GAC and CNT could all described by Modified Freundlich equation、Pseudo-1st-order equation、Pseudo-2nd-order equation. The constants of thermodynamic on CNT are : ΔGo were in range of - 0.77 ~ - 0.80 kcal/mol , △Ho were in range of - 0.6 kcal/mol, and △So were in range of 0.53 ~ 0.72 cal/mol-K. The constants of thermodynamic on GAC are : ΔGo were in range of - 0.99 ~ - 1.11 kcal/mol, △Ho were in range of - 0.6 kcal/mol, and △So were in range of 1.21 ~ 1.84 cal/mol-K. The reactions of perchlorate adsorbed on GAC and CNT were all belonging to spontaneously exothermic reactions.
目次 Table of Contents
目  錄
謝 誌 i
中文摘要 iii
英文摘要 iv
目  錄 vi
表  次 x
圖  次 xii
第一章 前 言 1
1.1 研究緣起 1
1.2 研究目的 2
1.3 研究內容 3
第二章 文獻回顧 4
2.1 吸附分離技術應用 4
2.2 無機鹽來源 6
2.3 硫酸鹽、氯鹽與硝酸鹽對人體之影響 7
2.3.1 硫酸鹽 7
2.3.2 氯鹽 9
2.3.3 硝酸鹽 10
2.3.4 過氯酸鹽的來源及人體之健康影響 12
2.4 過氯酸鹽的分析技術 14
2.4.1 早期分析方法 14
2.4.2 現代分析方法 17
2.5 奈米碳管介紹 17
2.6 奈米碳管之應用 27
2.7 活性碳 34
2.7.1 活性碳的構造 34
2.7.2 活性碳的物化性質 35
2.8 吸附原理 36
2.8.1 影響吸附能力因素 38
2.8.2 動力吸附模式 40
2.8.3 等溫吸附模式 42
2.8 熱力學模式 45
第三章 研究設備與方法 47
3.1 實驗流程 47
3.2 實驗材料與設備 50
3.2.1 實驗材料 50
3.3 實驗設備 53
3.4 實驗藥品 57
3.5 分析方法 57
3.5.1 過氯酸鹽之分析方法 58
3.5.2 過氯酸鹽之檢量線配製 59
3.6 奈米碳管之特性分析 60
3.6.1 掃描式電子顯微鏡 60
3.6.2 比表面積分析儀 60
3.6.3 霍氏轉換紅外線光譜 61
3.6.4 熱重量分析儀 61
3.7 吸附實驗步驟 62
3.7.1 實驗裝置 62
3.7.2 過氯酸鹽動力吸附實驗 62
3.7.3 pH值實驗 63
3.7.4 溫度實驗 63
第四章 結果與討論 64
4.1 奈米碳管與粒狀活性碳之特性 64
4.2 過氯酸鹽之吸附效率 68
4.3 離子強度對過氯酸鹽吸附的變化 69
4.4 不同腐植酸濃度之影響 74
4.5 過氯酸鹽等溫吸附 78
4.5.1 不同pH值之影響 78
4.5.2 不同溫度之影響 79
4.6 吸附熱力學之計算 81
4.7 國內外文獻之吸附劑及效率之比較 83
第五章 結論與建議 85
5.1 結論 85
5.2 建議 86
參考文獻 87
表  次
表2-1 環境工程上之吸附劑基本類型 5
表2-2 碳之同素異形體的結構與物性 20
表2-3 奈米碳管製程比較表 21
表2-4 物理吸附與化學吸附 38
表3-1 單壁奈米碳管比表面積相關資料 50
表3-2 奈米碳管之物理性質 51
表3-3 粒狀活性碳之物理性質 51
表3-4 水質調查分析方法彙整表 58
表3-5 孔徑等級 61
表4-1 二種吸附劑之物理特性 67
表4-2 奈米碳管以不同動力模式模擬不同離子強度之參數 72
表4-3 粒狀活性碳以不同動力模式模擬不同離子強度之參數 73
表4-4 奈米碳管以不同動力模式模擬不同腐植酸之參數 77
表4-5 粒狀活性碳以不同動力模式模擬不同腐植酸之參數 77
表4-6 不同溫度下進行Langmuir及Freundlich模式模擬奈米碳管等溫吸附過氯酸鹽之參數 81
表4-7 不同溫度下進行Langmuir及Freundlich模式模擬粒狀活性碳等溫吸附過氯酸鹽之參數 81
表4-8 以奈米碳管吸附過氯酸鹽之熱力學參數 82
表4-9 以粒狀活性碳吸附過氯酸鹽之熱力學參數 83
表4-10 不同吸附劑對過氯酸鹽吸附之比較 84
圖  次
圖2-1 單層碳管 18
圖2-2 多層奈米碳管 19
圖2-3 奈米碳管形式 19
圖2-4 電弧放電法原理 22
圖2-5 化學氣相沈積法原理 23
圖2-6 微波輔助化學氣相沉積法原理 24
圖2-7 雷射氣化法原理 24
圖2-8 奈米碳管五環與七環結構 25
圖2-9 單壁奈米碳管 26
圖2-10 多壁奈米碳管 26
圖2-11 Freundlich方程式吸附曲線 43
圖2-12 Langmuir方程式吸附曲線 44
圖3-1 研究架構流程圖 48
圖3-2 去除水中過氯酸鹽之研究流程圖 49
圖3-3 奈米碳管之SEM 52
圖3-4 奈米碳管之EDS 52
圖3-5 掃描式電子顯微鏡 60
圖4-1 奈米碳管之SEM 65
圖4-2 奈米碳管之EDS 65
圖4-3 粒狀活性碳之SEM 66
圖4-4 粒狀活性碳之EDS 66
圖4-5 奈米碳管之FTIR 68
圖4-6 過氯酸鹽吸附容量隨時間變化之趨勢 69
圖4-7 Modified Freundlich Equation模式探討不同吸附劑在不同離子強度下吸附反應速率比較分析 71
圖4-8 Pseudo-1st-order模式探討不同吸附劑在不同離子強度下吸附反應速率比較分析 71
圖4-9 Pseudo-2nd-order模式探討不同吸附劑在不同離子強度下吸附反應速率比較分析 72
圖4-10 以Modified Freundlich equation模式探討不同吸附劑在不同腐植酸濃度下吸附反應速率比較分析 75
圖4-11 以Pseudo-1st-order模式探討不同吸附劑在不同腐植酸濃度下吸附反應速率比較分析 76
圖4-12 以Pseudo-2nd-order模式探討不同吸附劑在不同腐植酸濃度下吸附反應速率比較分析 76
圖4-13 不同pH對過氯酸鹽之平衡吸附結果 78
圖4-14 以Langmuir模式下探討不同溫度下對過氯酸鹽平衡吸附結果 80
圖4-15 以Freundlich模式下探討不同溫度下對過氯酸鹽平衡吸附結果 80
圖4-16 奈米碳管吸附過氯酸鹽之lnK0及1/T之關係圖 82
參考文獻 References
參考文獻
1. Alizadeh, B., Ghorbani, M., & Salehi, M. A. (2016). Application of polyrhodanine modified multi-walled carbon nanotubes for high efficiency removal of Pb (II) from aqueous solution. Journal of Molecular Liquids, 220, 142-149.
2. Abbas, A., Al-Amer, A. M., Laoui, T., Al-Marri, M. J., Nasser, M. S., Khraisheh, M., & Atieh, M. A. (2016). Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications. Separation and Purification Technology, 157, 141-161.
3. Al-Saidi, H. M., Abdel-Fadeel, M. A., El-Sonbati, A. Z., & El-Bindary, A. A. (2016). Multi-walled carbon nanotubes as an adsorbent material for the solid phase extraction of bismuth from aqueous media: Kinetic and thermodynamic studies and analytical applications. Journal of Molecular Liquids, 216, 693-698.
4. Adesola, O. I. (2009). Orthogonal experiments in the development of carbon-resin for chloride removal from solutions. Statistical Methodology, 6(2), 109-119.
5. Ahmmad, B., Kusumoto, Y., Somekawa, S., & Ikeda, M. (2008). Carbon nanotubes synergistically enhance photocatalytic activity of TiO 2. Catalysis Communications, 9(6), 1410-1413.
6. Baidas, S., Gao, B., & Meng, X. (2011). Perchlorate removal by quaternary amine modified reed. Journal of hazardous materials, 189(1), 54-61.
7. Bansal, R. C., & Goyal, M. (2010). Activated carbon adsorption. CRC press.
8. Bhatnagar, A., & Sillanpää, M. (2011). A review of emerging adsorbents for nitrate removal from water. Chemical Engineering Journal, 168(2), 493-504.
9. Cai, L., Lv, W., Zhu, H., & Xu, Q. (2016). Molecular dynamics simulation on adsorption of pyrene-polyethylene onto ultrathin single-walled carbon nanotube. Physica E: Low-dimensional Systems and Nanostructures, 81, 226-234.
10. Cui, P., & Wang, A. J. (2014). Synthesis of CNTs/CuO and its catalytic performance on the thermal decomposition of ammonium perchlorate. Journal of Saudi Chemical Society.
11. Cecen, F., & Aktas, Ö. (2011). Activated carbon for water and wastewater treatment: Integration of adsorption and biological treatment. John Wiley & Sons.
12. Clewell, R. A., Chaudhuri, S., Dickson, S., Cassady, R. S., Wallner, W. M., Eldridge, J. E., & Tsui, D. T. (2000). Analysis of trace level perchlorate in drinking water and ground water by electrospray mass spectrometry. In Perchlorate in the Environment (pp. 45-58). Springer US.
13. Cox, A. R., Mogford, R., Vincent, B., & Harley, S. (2001). The effect of polymer chain architecture on the adsorption properties of derivatised polyisobutylenes at the carbon/n-heptane interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 181(1), 205-213.
14. Dehghani, M. H., Mostofi, M., Alimohammadi, M., McKay, G., Yetilmezsoy, K., Albadarin, A. B., ... & Sahu, J. N. (2016). High-performance removal of toxic phenol by single-walled and multi-walled carbon nanotubes: Kinetics, adsorption, mechanism and optimization studies. Journal of Industrial and Engineering Chemistry, 35, 63-74.
15. Dehghani, M. H., Haghighat, G. A., Yetilmezsoy, K., McKay, G., Heibati, B., Tyagi, I., ... & Gupta, V. K. (2016). Adsorptive removal of fluoride from aqueous solution using single-and multi-walled carbon nanotubes. Journal of Molecular Liquids, 216, 401-410.
16. Ding, H., Li, X., Wang, J., Zhang, X., & Chen, C. (2016). Adsorption of chlorophenols from aqueous solutions by pristine and surface functionalized single-walled carbon nanotubes. Journal of Environmental Sciences, 43, 187-198.
17. Dean, K. E., Palachek, R. M., Noel, J. M., Warbritton, R., Aufderheide, J., & Wireman, J. (2004). Development of freshwater water‐quality criteria for perchlorate. Environmental Toxicology and Chemistry, 23(6), 1441-1451.
18. Dresselhaus, M. S., Dresselhaus, G., & Saito, R. (1995). Physics of carbon nanotubes. Carbon, 33(7), 883-891.
19. Engel, M., & Chefetz, B. (2016). Adsorption and desorption of dissolved organic matter by carbon nanotubes: Effects of solution chemistry. Environmental Pollution, 213, 90-98.
20. Ersan, G., Apul, O. G., & Karanfil, T. (2016). Linear solvation energy relationships (LSER) for adsorption of organic compounds by carbon nanotubes. Water research, 98, 28-38.
21. Ersan, G., Kaya, Y., Apul, O. G., & Karanfil, T. (2016). Adsorption of organic contaminants by graphene nanosheets, carbon nanotubes and granular activated carbons under natural organic matter preloading conditions. Science of The Total Environment.
22. Gangupomu, R. H., Sattler, M. L., & Ramirez, D. (2016). Comparative study of carbon nanotubes and granular activated carbon: physicochemical properties and adsorption capacities. Journal of hazardous materials, 302, 362-374.
23. Grosse, Y., Loomis, D., Guyton, K. Z., Lauby-Secretan, B., El Ghissassi, F., Bouvard, V., ... & Straif, K. International Agency for Research on Cancer Monograph Working, G (2014) Carcinogenicity of fluoro-edenite, silicon carbide fibres and whiskers, and carbon nanotubes. Lancet Oncol, 15, 1427-1428.
24. Greer, M. A., Goodman, G., Pleus, R. C., & Greer, S. E. (2002). Health effects assessment for environmental perchlorate contamination: the dose response for inhibition of thyroidal radioiodine uptake in humans. Environmental health perspectives, 110(9), 927.
25. Guan, Z., Tang, X. Y., Nishimura, T., Huang, Y. M., & Reid, B. J. (2016). Adsorption of linear alkylbenzene sulfonates on carboxyl modified multi-walled carbon nanotubes. Journal of hazardous materials.
26. Huang, Z. N., Wang, X. L., & Yang, D. S. (2015). Adsorption of Cr (VI) in wastewater using magnetic multi-wall carbon nanotubes. Water Science and Engineering, 8(3), 226-232.
27. Hjeresen, D., Rae, S., Beers, B., Saladen, M., Nylander, C. L., Barr, A., ... & Hollis, D. (2003). Los Alamos National Laboratory Perchlorate Issues Update. LA-CP-03-0441. Los Alamos, NM: Los Alamos National Laboratory.
28. Huling, S. G., Jones, P. K., Ela, W. P., & Arnold, R. G. (2005). Fenton-driven chemical regeneration of MTBE-spent GAC. Water research, 39(10), 2145-2153.
29. ITRC, In Situ Bioremediation in GW-Perchlorate (2002).
30. Kang, D., Yu, X., Ge, M., Xiao, F., & Xu, H. (2016). Novel Al-doped carbon nanotubes with adsorption and coagulation promotion for organic pollutant removal. Journal of Environmental Sciences.
31. Kumar, E., Bhatnagar, A., Choi, J. A., Kumar, U., Min, B., Kim, Y., ... & Jeon, B. H. (2010). Perchlorate removal from aqueous solutions by granular ferric hydroxide (GFH). Chemical Engineering Journal, 159(1), 84-90.
32. Karge, H. G. (2008). Adsorption and diffusion (Vol. 7). Springer Science & Business Media.
33. Kim, Y. N., Lee, Y. C., & Choi, M. (2013). Complete degradation of perchlorate using Pd/N-doped activated carbon with adsorption catalysis bifunctional roles. Carbon, 65, 315-323.
34. Kafa, H., Wang, J. T. W., Rubio, N., Venner, K., Anderson, G., Pach, E., ... & Al-Jamal, K. T. (2015). The interaction of carbon nanotubes with an in vitro blood-brain barrier model and mouse brain in vivo. Biomaterials, 53, 437-452.
35. Liu, L., Nicholson, D., & Bhatia, S. K. (2015). Adsorption of CH 4 and CH4/CO2 mixtures in carbon nanotubes and disordered carbons: a molecular simulation study. Chemical Engineering Science, 121, 268-278.
36. Liang, J., Liu, J., Yuan, X., Dong, H., Zeng, G., Wu, H., ... & Yu, Z. (2015). Facile synthesis of alumina-decorated multi-walled carbon nanotubes for simultaneous adsorption of cadmium ion and trichloroethylene. Chemical Engineering Journal, 273, 101-110.
37. Lu, C., & Su, F. (2007). Adsorption of natural organic matter by carbon nanotubes. Separation and Purification Technology, 58(1), 113-121.
38. Lu, C., & Chiu, H. (2006). Adsorption of zinc (II) from water with purified carbon nanotubes. Chemical Engineering Science, 61(4), 1138-1145.
39. Li, Y. H., Di, Z., Ding, J., Wu, D., Luan, Z., & Zhu, Y. (2005). Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water research, 39(4), 605-609.
40. Lim, J. L., & Okada, M. (2005). Regeneration of granular activated carbon using ultrasound. Ultrasonics Sonochemistry, 12(4), 277-282.
41. Lu, C., Chung, Y. L., & Chang, K. F. (2005). Adsorption of trihalomethanes from water with carbon nanotubes. Water research, 39(6), 1183-1189.
42. Li, Q. L., Yuan, D. X., & Lin, Q. M. (2004). Evaluation of multi-walled carbon nanotubes as an adsorbent for trapping volatile organic compounds from environmental samples. Journal of Chromatography A, 1026(1), 283-288.
43. Li, Y. H., Ding, J., Luan, Z., Di, Z., Zhu, Y., Xu, C., ... & Wei, B. (2003). Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon, 41(14), 2787-2792.
44. Li, Y. H., Wang, S., Luan, Z., Ding, J., Xu, C., & Wu, D. (2003). Adsorption of cadmium (II) from aqueous solution by surface oxidized carbon nanotubes. Carbon, 41(5), 1057-1062.
45. Mubarak, N. M., Sahu, J. N., Abdullah, E. C., & Jayakumar, N. S. (2016). Rapid adsorption of toxic Pb (II) ions from aqueous solution using multiwall carbon nanotubes synthesized by microwave chemical vapor deposition technique. Journal of Environmental Sciences.
46. Mubarak, N. M., Sahu, J. N., Abdullah, E. C., Jayakumar, N. S., & Ganesan, P. (2015). Novel microwave-assisted multiwall carbon nanotubes enhancing Cu (II) adsorption capacity in water. Journal of the Taiwan Institute of Chemical Engineers, 53, 140-152.
47. Mahmudov, R., & Huang, C. P. (2010). Perchlorate removal by activated carbon adsorption. Separation and Purification Technology, 70(3), 329-337.
48. Mubarak, N. M., Sahu, J. N., Abdullah, E. C., & Jayakumar, N. S. (2016). Rapid adsorption of toxic Pb (II) ions from aqueous solution using multiwall carbon nanotubes synthesized by microwave chemical vapor deposition technique. Journal of Environmental Sciences.
49. Ncibi, M. C., & Sillanpää, M. (2015). Mesoporous carbonaceous materials for single and simultaneous removal of organic pollutants: Activated carbons vs. carbon nanotubes. Journal of Molecular Liquids, 207, 237-247.
50. Namasivayam, C., & Sangeetha, D. (2008). Application of coconut coir pith for the removal of sulfate and other anions from water. Desalination, 219(1), 1-13.
51. Nandi, B. K., Goswami, A., & Purkait, M. K. (2009). Adsorption characteristics of brilliant green dye on kaolin. Journal of Hazardous Materials, 161(1), 387-395.
52. Orris, G. J. (2004). Perchlorate in natural minerals and materials. USGS Quarterly Report.
53. Pyrgiotakis, G., Vasanthakumar, A., Gao, Y., Eleftheriadou, M., Toledo, E., DeAraujo, A., ... & Demokritou, P. (2015). Inactivation of foodborne microorganisms using engineered water nanostructures (EWNS). Environmental science & technology, 49(6), 3737-3745.
54. Pyrgiotakis, G., McDevitt, J., Bordini, A., Diaz, E., Molina, R., Watson, C., ... & Yamauchi, T. (2014). A chemical free, nanotechnology-based method for airborne bacterial inactivation using engineered water nanostructures. Environmental Science: Nano, 1(1), 15-26.
55. Robati, D., Mirza, B., Ghazisaeidi, R., Rajabi, M., Moradi, O., Tyagi, I., ... & Gupta, V. K. (2016). Adsorption behavior of methylene blue dye on nanocomposite multi-walled carbon nanotube functionalized thiol (MWCNT-SH) as new adsorbent. Journal of Molecular Liquids, 216, 830-835.
56. Rajabi, M., Mirza, B., Mahanpoor, K., Mirjalili, M., Najafi, F., Moradi, O., ... & Agarwal, S. (2016). Adsorption of malachite green from aqueous solution by carboxylate group functionalized multi-walled carbon nanotubes: Determination of equilibrium and kinetics parameters. Journal of Industrial and Engineering Chemistry, 34, 130-138.
57. Rebhun, M. (2004). Desalination of reclaimed wastewater to prevent salinization of soils and groundwater. Desalination, 160(2), 143-149.
58. Reynhout, X. E. E., Reijenga, J. C., Notten, P. H. L., Niessen, R. A. H., Daenen, M., de Fouw, R. D., ... & Veld, M. A. J. (2003). The Wondrous World of Carbon Nanotubes-a review of current carbon nanotube technologies. Eindhoven University of Technology.
59. Sun, W., Jiang, B., Wang, F., & Xu, N. (2015). Effect of carbon nanotubes on Cd (II) adsorption by sediments. Chemical Engineering Journal, 264, 645-653.
60. Sabna, V., Thampi, S. G., & Chandrakaran, S. (2015). Adsorption of crystal violet onto functionalised multi-walled carbon nanotubes: Equilibrium and kinetic studies. Ecotoxicology and environmental safety.
61. Strachowski, P., & Bystrzejewski, M. (2015). Comparative studies of sorption of phenolic compounds onto carbon-encapsulated iron nanoparticles, carbon nanotubes and activated carbon. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 467, 113-123.
62. Srivastava, V., Weng, C. H., Singh, V. K., & Sharma, Y. C. (2011). Adsorption of nickel ions from aqueous solutions by nano alumina: kinetic, mass transfer, and equilibrium studies. Journal of Chemical & Engineering Data, 56(4), 1414-1422.
63. Stafiej, A., & Pyrzynska, K. (2007). Adsorption of heavy metal ions with carbon nanotubes. Separation and Purification Technology, 58(1), 49-52.
64. Sabio, E., González, E., González, J. F., González-Garcıa, C. M., Ramiro, A., & Ganan, J. (2004). Thermal regeneration of activated carbon saturated with p-nitrophenol. Carbon, 42(11), 2285-2293.
65. Wang, X., Qu, R., Liu, J., Wei, Z., Wang, L., Yang, S., ... & Wang, Z. (2016). Effect of different carbon nanotubes on cadmium toxicity to Daphnia magna: The role of catalyst impurities and adsorption capacity. Environmental Pollution, 208, 732-738.
66. Wu, W., Yang, K., Chen, W., Wang, W., Zhang, J., Lin, D., & Xing, B. (2016). Correlation and prediction of adsorption capacity and affinity of aromatic compounds on carbon nanotubes. Water research, 88, 492-501.
67. Wu, Z. L., Yang, H., Jiao, F. P., Liu, Q., Chen, X. Q., & Yu, J. G. (2015). Carbon nanoparticles pillared multi-walled carbon nanotubes for adsorption of 1-naphthol: Thermodynamics, kinetics and isotherms. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 470, 149-160.
68. Weng, C. H., Lin, Y. T., Chang, C. K., & Liu, N. (2013). Decolourization of direct blue 15 by Fenton/ultrasonic process using a zero-valent iron aggregate catalyst. Ultrasonics sonochemistry, 20(3), 970-977.
69. Weng, C. H., & Wu, Y. C. (2011). Potential low-cost biosorbent for copper removal: pineapple leaf powder. Journal of Environmental Engineering, 138(3), 286-292.
70. Wu, X., Wang, Y., Xu, L., & Lv, L. (2010). Removal of perchlorate contaminants by calcined Zn/Al layered double hydroxides: Equilibrium, kinetics, and column studies. Desalination, 256(1), 136-140.
71. Weng, C. H., Sharma, Y. C., & Chu, S. H. (2008). Adsorption of Cr (VI) from aqueous solutions by spent activated clay. Journal of hazardous materials, 155(1), 65-75.
72. Wanqing, L. (2001). The characterization of hydrogen ion concentration in sequential cumulative rainwater. Atmospheric Environment, 35(35), 6219-6225.
73. Xia, C., Jing, Y., Jia, Y., Yue, D., Ma, J., & Yin, X. (2011). Adsorption properties of congo red from aqueous solution on modified hectorite: kinetic and thermodynamic studies. Desalination, 265(1), 81-87.
74. Xu, J. H., Gao, N. Y., Deng, Y., Sui, M. H., & Tang, Y. L. (2011). Perchlorate removal by granular activated carbon coated with cetyltrimethyl ammonium chloride. Desalination, 275(1), 87-92.
75. Xia, X. H., Jia, Z. J., Yu, Y., Liang, Y., Wang, Z., & Ma, L. L. (2007). Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O. carbon, 45(4), 717-721.
76. Xie, Y., Li, S., Wang, F., & Liu, G. (2010). Removal of perchlorate from aqueous solution using protonated cross-linked chitosan. Chemical Engineering Journal, 156(1), 56-63.
77. Yu, F., Ma, J., Wang, J., Zhang, M., & Zheng, J. (2016). Magnetic iron oxide nanoparticles functionalized multi-walled carbon nanotubes for toluene, ethylbenzene and xylene removal from aqueous solution. Chemosphere, 146, 162-172.
78. Yu, F., Sun, S., Han, S., Zheng, J., & Ma, J. (2016). Adsorption removal of ciprofloxacin by multi-walled carbon nanotubes with different oxygen contents from aqueous solutions. Chemical Engineering Journal, 285, 588-595.
79. Yu, X., Sun, W., & Ni, J. (2015). LSER model for organic compounds adsorption by single-walled carbon nanotubes: Comparison with multi-walled carbon nanotubes and activated carbon. Environmental Pollution, 206, 652-660.
80. Yu, Y., Jimmy, C. Y., Yu, J. G., Kwok, Y. C., Che, Y. K., Zhao, J. C., ... & Wong, P. K. (2005). Enhancement of photocatalytic activity of mesoporous TiO 2 by using carbon nanotubes. Applied Catalysis A: General, 289(2), 186-196.
81. Yoshizawa, N., Maruyama, K., Yamada, Y., & Zielinska-Blajet, M. (2000). XRD evaluation of CO2 activation process of coal-and coconut shell-based carbons. Fuel, 79(12), 1461-1466.
82. Zhan, Y., Lin, J., & Zhu, Z. (2011). Removal of nitrate from aqueous solution using cetylpyridinium bromide (CPB) modified zeolite as adsorbent. Journal of hazardous materials, 186(2), 1972-1978.
83. 成會明,(2004),奈米碳管,五南出版社,台北。
84. 秦靜如,(2011),奈米碳管吸附鄰苯二甲酸酯類之研究,科技部,台北。
85. 袁菁,(2008)應用二氧化鈦複合奈米碳管於甲基第三丁基醚(MtBE)光催化分解反應特性研究
86. 行政院環境保護署環境監測及資訊處,(2008),環境水質監測資料電子交換作業規範(草案)。
87. 李宗緯,(2010),利用廉價吸附材去除廢水中溴化阻燃劑之研究,義守大學,土木與生態工程學系碩士論文。
88. 張正綸,(2011),Fenton法結合超音波技術降解直接性偶氮染料之研究,義守大學,土木與生態工程學系碩士論文。
89. 張育姍,(2004),翡翠水庫集水區非點源污染整治區域優先順序評估,國立台北科技大學,環境規劃與管理研究所,碩士論文。
90. 莊蕙萍,(2003),三段式流體化床生物程序處理PAN廢水之程序功能評估與微生物族群動態變化之探討,國立成功大學,環境工程學系碩士論文。
91. 陳一銘,(2007),零價鐵去除水中硝酸鹽之研究,淡江大學,水資源及環境工程研究所博士論文。
92. 陳渤丰,(2010),淨水程序與配水管網中生物可分解有機質變化與預測之研究,國立中山大學,環境工程研究所碩士論文。
93. 陳靜生,(1992),「水環境化學」,曉園出版社,台北。
94. 曾文裕,(2006),催化性雙金屬還原水中硝酸鹽之研究,台灣大學,環境工程研究所碩士論文。
95. 黃文昇,(2012),超音波提升芬頓及過硫酸鹽程序去除水中染料之研究,義守大學,土木與生態工程學系碩士論文。
96. 黃韋翔,(2009),奈米碳管特性對於原水中黃酸吸附特性之研究,國立中山大學,環境工程研究所碩士論文。
97. 劉展良,(2005),利用微波電漿化學氣相沉積法成長多壁奈米碳管及其電性之研究,國立中央大學,機械工程研究所碩士論文。
98. 張能復,(2009),奈米碳管產生空氣負離子裝置控制生物氣膠效率之研究,科技部,台北。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.15.156.140
論文開放下載的時間是 校外不公開

Your IP address is 3.15.156.140
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code