Responsive image
博碩士論文 etd-0526118-112625 詳細資訊
Title page for etd-0526118-112625
論文名稱
Title
單層的三族-鉍半導體與過渡金屬二硫化物 MX2 (M=Cr, Mn, Fe, or Co; X=S, Se, or Te)的電子和拓撲性質:第一性原理研究
The Electronic and Topological Properties of Monolayers of Group III-Bi Semiconductor and Transition Metal Dichalcogenides MX2 (M=Cr, Mn, Fe, or Co; X=S, Se, or Te): a First-Principles Study
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
80
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-05-18
繳交日期
Date of Submission
2018-06-26
關鍵字
Keywords
第一原理計算、電子結構、量子異常霍爾效應、量子自旋霍爾效應、三五族薄膜、拓撲相變、過渡金屬二硫族化物
Electronic structures, Quantum anomalous Hall effect, Topological phase transition, Quantum spin Hall effect, Transition metal dichalcogenides, III-V thin films, First-principles calculations
統計
Statistics
本論文已被瀏覽 5729 次,被下載 45
The thesis/dissertation has been browsed 5729 times, has been downloaded 45 times.
中文摘要
在這份論文中,我們研究在不同化學官能基以及等向性應力下單層蜂巢狀結構三族鉍的電子和拓撲性質。藉由第一原理計算,我們發現可利用氫化,氟化和非對稱官能基化調控的大能隙拓撲態。除了非對稱官能基化外,我們也探索過渡金屬吸附在鉍化銦,鉍化鎵和鉍化鉈的影響。值得注意地,我們辨別出鐵吸附鉍化銦和鉍化鎵是量子異常霍爾絕緣體態,然而當吸附鉻時則皆是非零陳數的半金屬態。此外,帶有非零陳數的半金屬態也發現在鐵吸附和鉻吸附的鉍化鉈中。藉由外加微小應力這些半金屬態仍然可轉化為絕緣態同時保持它們的非凡能帶拓撲態。 最後,我們也研究經過挑選的單層第四周期過渡金屬二硫族化物MX2 (M=Cr, Fe, Mn, or Co; X=S, Se, or Te) 的電子和拓撲性質,並且發現這些單層結構擁有本質鐵磁性。有趣的事是我們發現非零陳數半金屬態在仍然能利用應力調控的CrX2, FeX2 和 MnX2中。這些結果顯示三族鉍和鐵磁性的第四周期過渡金屬二硫族化物可能應用在電子自旋和低耗電元件中。
Abstract
In this dissertation, we investigated the electronic and topological properties of monolayer group III-Bi in honeycomb structure using chemical functionalizations as well as the effects of isotropic strain. Using first-principles electronic calculations, we found large-gap nontrivial topological phases which are tunable via hydrogenation or fluorination as well as asymmetric functionalization. In addition to functionalization, we also explored the effects of transition metal doping in InBi, GaBi, and TlBi. Remarkably, we identified quantum anomalous Hall (QAH) insulating states in Fe-doped InBi and GaBi while they are both semi-metallic with non-zero Chern number when doped with Cr. Futhermore, semi-metallic phases with non-zero Chern number were found in Fe- and Cr-doped TlBi. These semi-metallic phases could be still be driven to insulating states by applying small strain while preserving their nontrivial band topology. Finally, we also looked into the electronic and topological properties of selected monolayer period-4 transition metal dichalcogenides (MX2, M=Cr, Fe, Mn, or Co; X=S, Se, or Te) and found that these monolayers habor instrinsic ferromagnetism. Interestingly, we found semi-metallic phases with non-zero Chern number in CrX2, FeX2, and MnX2 which could still be manipulated using strain. These results show that group III-Bi and ferromagnetic period-4 transition metal dichalcogenides could be used for spintronics and low-power-consuming device applications.
目次 Table of Contents
論文審定書 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Vienna Ab-initio Simulation Package (VASP) . . . . . . . . . . . 7
2.2 Band Topology and Edge States Calculation . . . . . . . . . . . 8
3 Chemically-induced Large-Gap Quantum Anomalous Hall Insulator States in III-Bi Honeycombs. . . 9
3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . 16
3.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4 Quantum anomalous Hall insulator phases in transition metal-doped III-Bi honeycombs . . . 24
4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . 30
5 Electronic and Topological Properties of Monolayer MX2 (M=Cr, Mn, Fe, or Co; X=S, Se, or Te) Transition Metal Dichalcogenides . .36
5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.4.1 CrX2 Monolayers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4.2 MnX2 Monolayers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4.3 FeX2 Monolayers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.4.4 CoX2 Monolayers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . 57
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
參考文獻 References
[1] A. Bansil, H. Lin, and T. Das, Rev. Mod. Phys. 88, 021004 (2016).
[2] Y. J. Ando, Phys. Soc. Jpn. 82, 102001 (2013).
[3] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
[4] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[5] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057(54) (2011).
[6] E. H. Hall, Philos. Mag. 10, 301 (1880).
[7] E. H. Hall, Philos. Mag. 12, 157 (1881).
[8] K. v. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).
[9] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49, 405 (1982).
[10] H. Weng, R. Yu, X. Hu, X. Dai, and Z. Fang, Adv. Phys. 64, 227–282 (2015).
[11] M. I. D’yakonov and V. I. Perel, JETP Lett. 13, 467 (1971).
[12] M. I. D’yakonov and V. I. Perel, Phys. Lett. A 35, 459 (1971).
[13] Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, Science 306, 1910 (2004).
[14] B. A. Bernevig and S.-C. Zhang, Phys. Rev. Lett. 96, 106802 (2006).
[15] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
[16] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
[17] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314, 1757 (2006).
[18] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Science 318, 766 (2007).
[19] J. E. Moore and L. Balents, Phys. Rev. B 75, 121306(R) (2007).
[20] L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007).
[21] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
[22] A. Roth, Brüne, C. H. Buhmann, L. W. Molenkamp, J. Maciejko, X.-L. Qi, and S.-C. Zhang, Science 325, 294 (2009).
[23] X.-L. Qi, Y.-S. Wu, and S.-C. Zhang, Phys. Rev. B 74, 085308 (2006).
[24] K. He, Y. Wang, and Q. K. Xue, Natl. Sci. Rev. 1, 38–48 (2014).
[25] K. He, Physics 8, 41, (2015).
[26] X. Kou, Y. Fan, M. Lang, P. Upadhyaya, and K. L. Wang, Solid State Commun. 215, 34–53 (2015).
[27] C.-Z. Chang et al., Nat. Mater. 14, 473–477 (2015).
[28] C.-Z. Chang et al., Adv. Mater. 25, 1065–1070 (2013).
[29] C.-Z. Chang et al., Science 340, 167–170 (2013).
[30] A. J. Bestwick, E. J. Fox, X. Kou, L. Pan, K. L. Wang, and D. GoldhaberGordon, Phys. Rev. Lett. 114, 187201 (2015).
[31] X. Kou et al., Nat. Commun. 6, 8474 (2015).
[32] A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
[33] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
[34] C. C. Liu, W. Feng, and Y. Yao, Phys. Rev. Lett. 107, 076802 (2011).
[35] W.-F. Tsai, C.-Y. Huang, T.-R. Chang, H. Lin, H.-T. Jeng, and A. Bansil, Nat. Commun. 4, 1500 (2013).
[36] C. C. Liu, H. Jiang, and Y. Yao, Phys. Rev. B 84, 195430 (2011).
[37] F.-C. Chuang, L.-Z. Yao, Z.-Q. Huang, Y.-T. Liu, C.-H. Hsu, T. Das, H. Lin, and A. Bansil, Nano Lett. 14(5), 2505 (2014).
[38] M. Wada, S. Murakami, F. Freimuth, and G. Bihlmayer, Phys. Rev. B 83, 121310 (2011).
[39] Z.-Q. Huang, F.-C. Chuang, C.-H. Hsu, Y.-T. Liu, H.-R. Chang, H. Lin, and A. Bansil, Phys. Rev. B 88, 165301 (2013).
[40] Z. Liu, C. X. Liu, Y. S. Wu, W. H. Duan, F. Liu, and J. Wu, Phys. Rev. Lett. 107, 136805 (2011).
[41] Z.-Q. Huang, C.-H. Hsu, F.-C. Chuang, Y.-T. L, H. Lin, W.-S. Su, V. Ozolins, and A. Bansil, New J. Phys. 16, 105018 (2014).
[42] F.-C. Chuang, C.-H. Hsu, C.-Y. Chen, Z.-Q. Huang, V. Ozolins, H. Lin, and A. Bansil, Appl. Phys. Lett. 102, 022424 (2013).
[43] P. Zhang, Z. Liu, W. Duan, F. Liu, and J. Wu, Phys. Rev. B 85, 201410(R) (2012).
[44] Y. Xu, B. Yan, H.-J. Zhang, J. Wang, G. Xu, P. Tang, W. Duan, and S.-C. Zhang, Phys. Rev. Lett. 111, 136804 (2013).
[45] B.-H. Chou, Z.-Q. Huang, C.-H. Hsu, F.-C. Chuang, Y.-T. Liu, H. Lin, and A. Bansil, New J. Phys. 16, 115008 (2014).
[46] C. C. Liu, S. Guan, Z. Song, S. A. Yang, J. Yang, and Y. Yao, Phys. Rev. B 90, 085431 (2014).
[47] Z. Song, C. C. Liu, J. Yang, J.-Z. Han, M. Ye, B.-T. Fu, Y.-C. Yang, Q. N, J. Lu, and Y. Yao, NPG Asia Mat. 6, e147 (2014).
[48] C.-H. Hsu, Z.-Q. Huang, F.-C. Chuang, C.-C. Kuo, Y.-T. Liu, H. Lin, and A. Bansil, New J. Phys. 17, 025005 (2015).
[49] L. Chen, G. Cui, P. Zhang, X. Wang, H. Liu, and D. Wang, Phys. Chem. Chem. Phys. 16, 17206 (2014).
[50] Y. Ma, X. Li, L. Kou, B. Yan, C. Niu, Y. Dai, and T. Heine, Phys. Rev. B 91, 235306 (2015).
[51] C. P. Crisostomo, L.-Z. Yao, Z.-Q. Huang, C.-H. Hsu, F.-C. Chuang, H. Lin, M. A. Albao, and A. Bansil, Nano Lett. 15(10), 6568–6574 (2015).
[52] L.-Z. Yao, C. P. Crisostomo, C.-C. Yeh, S.-M. Lai, Z.-Q. Huang, C.-H. Hsu, F.-C. Chuang, H. Lin, and A. Bansil, Sci. Rep. 5, 15463 (2015).
[53] L. Li, X. Zhang, X. Chen, and M. Zhao, Nano Lett. 15(2), 1296–1301 (2015).
[54] M. Zhao, X. Chen, L. Li, and X. Zhang, Sci. Rep. 5, 8441 (2015).
[55] S.-H. Wu, G. Shan, and B. Yan, Phys. Rev. Lett. 113, 256401 (2014).
[56] C.-H. Hsu et al., Phys. Rev. B 96(16), 165426 (2017).
[57] C.-C. Liu, J.-J. Zhou, and Y. Yao, Phys. Rev. B 91, 165430 (2015).
[58] K.-J. Jin and S.-H. Jhi, Sci. Rep. 5, 8426 (2015).
[59] S.-P. Chen, Z.-Q. Huang, C. P. Crisostomo, C.-H. Hsu, F.-C. Chuang, H. Lin, and A. Bansil, Sci. Rep. 6, 31317 (2016).
[60] C. P. Crisostomo, Z.-Q. Huang, C.-H. Hsu, F.-C. Chuang, H. Lin, and A. Bansil, npj Comp. Mater. 3(1), 39 (2017).
[61] Z. Qiao, S. A. Yang, W. Feng, W.-K. Tse, J. Ding, Y. Yao, J. Wang, and Q. Niu, Phys. Rev. B 82, 161414(R) (2010).
[62] T. P. Kaloni, N. Singh, and U. Scwingenschlögl, Phys. Rev. B 89, 035409 (2014).
[63] T.P. Kaloni, J. Phys. Chem. C 118(43), 25200–25208 (2014).
[64] Z.-Q. Huang, W.-C. Chen, G. M. Macam, C. P. Crisostomo, S.-M. Huang, R.-B. Chen, M. A. Albao, D. -J. Jang, H. Lin, and F.-C. Chuang, Nano Res. Lett. 13, 43 (2018).
[65] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, Nature Chemistry 5, 263–275 (2013).
[66] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Nature Nanotech. 7, 699–712 (2012).
[67] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).
[68] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, Nano Lett. 10, 1271–1275 (2010).
[69] M. A. Cazalilla, H. Ochoa, and F. Guinea, Phys. Rev. Lett. 113, 077201 (2014).
[70] X. Qian, J. Liu, L. Fu, and J. Li, Science 346(6215), 1344–1347 (2014).
[71] S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B. I. Yakobson, J.-C. Idrobo, P. M. Ajayan, and J. Lou, Nat. Mater. 12, 754–759 (2013).
[72] A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y.-M.You, G.-H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, Nat. Mater. 12, 554–561 (2013).
[73] Z. Zhang, X. Zhou, V. H. Crespi, and B. I. Yakobson, ACS Nano 7(12), 10475–10481 (2013).
[74] W. Li, M. Guo, G. Zhang, and Y.-W. Zhang, Phys. Rev. B 89, 205402 (2014).
[75] H. Terrones and M. Terrones, 2D Materials 1, 011003 (2014).
[76] Y. Ma, L. Kou, X. Li, Y. Dai, S. C. Smith, and T. Heine, Phys. Rev. B 92, 085427 (2015).
[77] S. M. Nie, Z. Song, H. Weng, and Z. Fang, Phys. Rev. B 91, 235434 (2015).
[78] Y. Sun, C. Felser, and B. Yan, Phys. Rev. B 92, 165421 (2015).
[79] Y. Ma, L. Kou, X. Li, Y. Dai, and T. Heine, Phys. Rev. B 93, 035442 (2016).
[80] P.-F. Liu, L. Zhou, T. Frauenheimc, and L.-M. Wu, Nanoscale 8, 4915–4921 (2016).
[81] C. Liu, T. L. Hughes, X.-L. Qi, K. Wang, and S.-C. Zhang, Phys. Rev. Lett. 100, 236601 (2008).
[82] I. Knez, R.-R. Du, and G. Sullivan, Phys. Rev. Lett. 107, 136603 (2011).
[83] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[84] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[85] D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).
[86] J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
[87] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
[88] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
[89] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
[90] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
[91] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
[92] A. A. Soluyanov and D. Vanderbilt, Phys. Rev. B 83(23), 235401 (2011).
[93] D. Gresch, G. Autès, O. V. Yazyev, M. Troyer, D. Vanderbilt, and B. A.
Bernevig, Phys. Rev. B 95(7), 075146 (2017).
[94] T. Fukui and Y. J. Hatsugai, Phys. Soc. Jpn. 76, 053702 (2007).
[95] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49, 405 (1982).
[96] M. Kohmoto, Ann. Phys. N.Y. 160, 343 (1985).
[97] M.-C. Chang and Q. Niu, Phys. Rev. B 53, 7010 (1996).
[98] Y. Yao, L. Kleinman, A. H. MacDonald, J. Sinova, T. Jungwirth, D.-S. Wang, E. Wang, and Q. Niu, Phys. Rev. Lett. 92, 037204 (2004).
[99] A. A. Mostof, J. R.Yates, Y.-S. Lee. I. Souza, D. Vanderbilt, and N. Marzari, Comput. Phys. Commun. 178, 685–699 (2008).
[100] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Rev.
Mod. Phys. 82, 1539 (2010).
[101] C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Phys. Rev. Lett. 101, 146802 (2008).
[102] R. Yu, W. Zhang, H.-J. Zhang, S.-C. Zhang, X. Dai, and Z. Fang, Science 329, 61–64 (2010).
[103] C. Fang, M. J. Gilbert, and B. A. Bernevig, Phys. Rev. Lett. 112, 046801 (2014).
[104] F. Zhang, X. Li, J. Feng, C. L. Kane, and E. J. Mele, arXiv:1309.7682 (2013).
[105] T. Zhou, J. Zhang, B. Zhao, H. Zhang, and Z. Yang, Nano Lett. 15(8), 5149–5155 (2015).
[106] K.-H. Jin and S.-H. Jhi, J. Phys. Condens. Matt., 24, 175001 (2012).
[107] J. Hong, E. Bekyarova, P. Liang, W. A. de Heer, R. C. Haddon, and S. Khizroeva, Sci. Rep. 2, 624 (2012).
[108] A. J. M. Giesbers, K. Uhlířová, M. Konečný, E. C. Peters, M. Burghard, J. Aarts, and C. F. J. Flipse, Phys. Rev. Lett. 111, 166101 (2013).
[109] D. V. Gruznev et al., Sci. Rep. 6, 19446 (2016).
[110] N. V. Denisov, A. A. Alekseev, O. A. Utas, S. G. Azatyan, A. V. Zotov, and A. A. Saranin, Surf. Sci. 651, 105–111 (2016).
[111] C. Ataca, H. Sahin, and S. Ciraci, J. Phys. Chem. C 116, 8983–8999 (2012).
[112] F. A. Rasmussen and K. S. Thygesen, J. Phys. Chem. C 119, 13169–13183 (2015).
[113] H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, and K. Ohtani, Nature 408, 944–946 (2000).
[114] C. F. van Bruggen, R. J. Haange, G. A. Wiegers, and D. K. G. de Boer, Physica B 99, 166 (1980).
[115] J. H. Zhang, T. L. T. Birdwhistell, and C. J. O’Connor, Solid State Comm. 74(6), 443–446 (1990).
[116] D. C. Freitas, R. Weht, A. Sulpice, G. Remenyi, P. Strobel, F. Gay, J. Marcus, and M. Núñez-Regueiro, J. Phys.: Condens. Matter 27, 176002 (2015).
[117] C. M. Fang, C. F. Van Bruggen, R. A. de Groot, G. A. Wiegers, and C.
Haas, J. Phys.: Condens. Matter 9, 10173 (1997).
[118] D. C. Freitas, M. Núñez, P. Strobel, A. Sulpice, R. Weht, A. A. Aligia, and
M. Núñez-Regueiro, Phys. Rev. B 87, 014420 (2013).
[119] H. Guo, N. Lu, L. Wang, X. Wu, and X.-C. Zeng, J. Phys. Chem. C 118, 7242–7249 (2014).
[120] H. L. Zhuang, M. D. Johannes, and M. N. Blonsky, Appl. Phys. Lett. 104, 022116 (2014).
[121] H. Y. Lv, W. J. Lu, D. F. Shao, Y. Liu, and Y. P. Sun, Phys. Rev. B 92, 214419 (2015).
[122] M. Lan, G. Xiang, Y. Nie, D. Yang, and X. Zhang, RSC Adv. 6, 31758 (2016).
[123] G. Gökoğlu and E. Aktürk, Mater. Res. Exp. 4, 116305 (2017).
[124] M. Kan, S. Adhikari, and Q. Sun, Phys. Chem. Chem. Phys. 16, 4990–4994 (2014).
[125] R. Tappero, I. Baraille, and A. Lichanot, Phys. Rev. B 58, 1236–1242 (1998).
[126] H. Vogt, T. Chattopadhyay, and H. J. Stolz, Phys. Chem. Solids 44, 869–873 (1983).
[127] T. Chattopadhyay, H. Vonschnering, R. Stansfeld, and G. Z. Mcintyre, Kristallogr. 199, 13–24 (1992).
[128] J. M. Hastings, N. Elliott, and L. M. Corliss, Phys. Rev. 115, 13–17 (1959).
[129] Q. Peng, Y. Dong, Z. Deng, H. Kou, S. Gao, and Y. J. Li, Phys. Chem. B 106, 9261–9265 (2002).
[130] P. Vulliet, J. Sanchez, D. Braithwaite, M. Amanowicz, and B. Malaman, Phys. Rev. B 63, 184403 (2001).
[131] N. Podberezskaya, S. Magarill, N. Pervukhina, and S. J. Borisov, Struct. Chem. 42, 654–681 (2001).
[132] B. Ouertani, J. Ouerfelli, M. Saadoun, B. Bessais, H. Ezzaouia, and J. Bernede, Solar Energy Mater. Solar Cells 87, 501–511 (2005).
[133] A. Kjekshus, T. Rakke, and A. F. Andresen, Acta Chem. Scand. 28a, 996–1000 (1974).
[134] F. Pertlik, Anz. Österr. Akad. Wiss., Math. Naturwiss. Kl. 123, 123 (1986).
[135] G. Brostigen and A. Kjekshus, Acta Chem. Scand. 24, 1925–1940 (1970).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code