Responsive image
博碩士論文 etd-0526118-211243 詳細資訊
Title page for etd-0526118-211243
論文名稱
Title
不同架橋劑與阻燃劑對水性PU薄膜阻燃性質之研究
Flame Retardancy of Waterborne Polyurethane Films with Different Crosslinking Agents and Retardants
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
94
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-06-22
繳交日期
Date of Submission
2018-06-26
關鍵字
Keywords
氮丙啶基、阻燃劑、機械性質、耐燃性、水性聚氨酯、架橋劑
Aziridinyl groups, Crosslinking Agent, Retardants, Waterborne polyurethane, mechanical properties, flame retardancy
統計
Statistics
本論文已被瀏覽 5640 次,被下載 0
The thesis/dissertation has been browsed 5640 times, has been downloaded 0 times.
中文摘要
提高水性聚氨酯(Waterborne polyurethane, WPU)耐燃性與熱穩定性之三種方式:改變水性聚氨酯的結構與特性、混摻添加型阻燃劑、引入反應型阻燃劑。本研究討論反應型(R系列)與添加型(A系列)阻燃劑的水性聚氨酯,含氮丙啶基之阻燃劑藉由化學鍵結的方式能提高相容性、機械性質、阻燃效果,此阻燃劑具有氮系阻燃效果與交聯結構生成;添加型阻燃劑不需要特定官能基與其它官能基反應,此阻燃劑具有氮系阻燃效果、磷系阻燃效果與高耐燃性。探討不同阻燃劑和時間點對水性聚氨酯阻燃效果,並且比較兩種阻燃劑之差異。
由極限氧指數(LOI)測試及UL-94垂直燃燒實驗結果顯示,加入反應型與添加型阻燃劑於水性PU合成過程,其薄膜皆可提高阻燃效果,而在第一時間點加入複合型阻燃劑(含三聚氰胺和磷酸三甲酯)的阻燃效果最佳(LOI值為34%);由FTIR與接觸角分析結果,可證實架橋劑在水性PU中鍵結,且水性PU交聯程度程度會隨著反應型阻燃劑增加而增加,但仍具有親水性;由機械性質之抗張強度(Tensile strength)結果觀察,其R系列和複合型阻燃劑(含三聚氰胺和蒙托土)之薄膜會提高,但單一型A系列阻燃劑之薄膜會降低。
Abstract
There are three approaches to improve flame retardancy and thermal stability of waterborne polyurethane (WPU): structure–property relationships of WPU, incorporation of additive type flame retardants into WPU, and reaction of reactive type flame retardants with WPU. Our researches include additive type flame retardants and reactive type flame retardants. Flame retardants with aziridinyl groups improved flame retardancy due to reducing the concentration of flammable gases and crosslinking effect; consequently, they have good compatibility of WPU, mechanical properties and flame-retardance properties of WPU films. Additive type flame retardants improved flame retardancy due to reducing the concentration of flammable gases, phosphorus compounds act as char-forming agents and effectively improve the flame-retardance properties; therefore, they don’t need reactive functional groups that can be reacted with a suitable functional group. To realize the flame retardant effect of different flame retardants and adding time with waterborne polyurethane, and to compare the differences between the two flame retardants.
According to Limiting Oxygen Index (LOI) test and UL-94 vertical burning experiment, it was shown that both additive type and reactive type flame retardants can improve thermal stability and flame retardancy of WPU. A complex type flame retardant(combining Melamine and Trimethyl phosphate) at the first adding time has the best effect(An LOI value of 34 %) in all retardants. According to Fourier transform infared spectrometer (FTIR) and Contact Angle test, it was shown that crosslinked PU films are formed. Additionally, the extent of crosslinking of the WPU films increases with increase of reactive type flame retardants. However, WPU films still have hydrophobic properties. According to mechanical properties of tensile strength, increasing crosslinking density of reactive type and complex type flame retardant (combining Melamine and Clay) are effective to improve mechanical properties and flame-retardance properties of WPU films. The results indicated that with the increase of reactive type flame retardants are incorporated in WPU films, the flame-retardance properties increased. Compared with additive type flame retardants, WPU films showed decreased the mechanical properties .
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 x
表目錄 xii
第一章 前言 - 1 -
1.1研究背景 - 1 -
1.2研究動機 - 2 -
第二章 文獻回顧 - 4 -
2.1水性聚氨酯 ( Waterborne Polyurethane, WPU )簡介 - 4 -
2.1.1水性聚氨酯基本結構 - 5 -
2.1.2聚氨酯離子體(PU ionomers) - 6 -
2.1.3水性聚氨酯合成方法 - 11 -
2.2水性聚氨酯乳化分散 - 14 -
2.2.1 水性聚氨酯分散之簡介 - 14 -
2.2.2 水性聚氨酯分散機制 - 15 -
2.3改善水性聚氨酯熱穩定性的方法 - 16 -
2.3.1 水性聚氨酯簡介 - 16 -
2.3.2 結構型水性聚氨酯 - 17 -
2.3.3 添加型水性聚氨酯 - 18 -
2.3.4 反應型水性聚氨酯 - 19 -
2.4阻燃機制 - 25 -
2.4.1 氣相阻燃 - 27 -
2.4.2 凝聚相阻燃 - 27 -
2.4.3 中斷熱交換阻燃 - 28 -
2.4.4 焦炭產量與阻燃性的關聯性 - 28 -
2.5阻燃性質測試方法 - 29 -
2.5.1 極限氧指數(Limiting Oxygen Index, LOI) - 29 -
2.5.2 UL-94垂直燃燒測試 - 30 -
2.6阻燃材料 - 32 -
2.6.1 鹵素阻燃劑 - 33 -
2.6.2 磷系阻燃劑 - 35 -
2.6.3 氮系阻燃劑 - 35 -
2.6.4 黏土阻燃劑 - 36 -
2.7水性PU架橋劑(Crosslinking agent) - 37 -
第三章 實驗方法 - 39 -
3.1實驗藥品 - 39 -
3.1.1水性聚氨酯之實驗藥品 - 39 -
3.1.2阻燃劑之實驗藥品 - 40 -
3.2實驗製備流程 - 42 -
3.2.1有機黏土的製備 - 42 -
3.2.2自行合成水性PU之製備 - 43 -
3.2.3不同阻燃劑於水性PU薄膜之製備 - 45 -
3.2.4含架橋劑之水性PU合成反應流程 - 46 -
3.3阻燃劑的儀器分析 - 48 -
3.3.1 X光繞射儀(X-ray Diffractometer, XRD) - 48 -
3.4水性PU薄膜之儀器分析 - 48 -
3.4.1傅立葉轉換紅外線光譜儀(Fourier Transform Infrared Spectroscopy, FTIR) - 48 -
3.4.2接觸角測量儀(Contact Angle Meter) - 49 -
3.4.3 WPU薄膜之機械性質測試 - 49 -
3.5水性PU薄膜的燃燒測試 - 49 -
3.5.1極限氧指數(Limiting Oxygen Index, LOI) - 49 -
3.5.2 UL 94垂直燃燒測試 - 50 -
3.6實驗參數與代號 - 50 -
第四章 結果與討論 - 54 -
4.1材料之儀器分析 - 54 -
4.1.1水性PU鍵結之FTIR分析 - 54 -
4.1.2阻燃劑之X光繞射分析 - 55 -
4.2不同架橋劑量對水性PU薄膜之儀器分析 - 57 -
4.2.1不同架橋劑量對水性PU薄膜之FTIR分析 - 57 -
4.2.2不同架橋劑量對水性PU薄膜之接觸角分析 - 60 -
4.3水性PU薄膜的燃燒測試 - 62 -
4.3.1水性PU架橋劑與阻燃劑之介紹 - 62 -
4.3.2 LOI燃燒測試結果 - 63 -
4.3.3 UL 94垂直燃燒測試結果 - 64 -
4.4水性PU薄膜之機械性質測試 - 68 -
4.4.1架橋劑對水性PU機械性質之影響 - 68 -
4.4.2單一型與複合型阻燃劑對於水性PU機械性質之影響 - 69 -
4.5綜合討論 - 71 -
第五章 結論 - 73 -
第六章 建議未來工作 - 76 -
第七章 參考文獻 - 77 -
參考文獻 References
[1] A. Sjodin, A. Bergman, D.G. Patterson, "A Review on Human Exposure to Brominated Flame Retardants - Particularly Polybrominated Diphenyl Ethers," Environment International, vol. 29, pp. 829-839, 2003.
[2] F. Rahman, K.H. Langford, M.D. Scrimshaw, J.N. Lester, "Polybrominated Diphenyl Ether (PBDE) Flame Retardants," Science of the Total Environment, vol. 275, pp. 1-17, 2001.
[3] O. Bayer, "Das Di-Isocyanat-Polyadditionsverfahren (Polyurethane)," Angewandte Chemie, vol. 59, pp. 257-288, 1947.
[4] P. Schlack, "Materialforschung: Neue Textilfasern braucht das Land, Bobingen AG für Textilfasern," pp.512, 2016.
[5] D. Dieterich, "Aqueous Emulsions, Dispersions and Solutions of Polyurethanes-Synthesis and Properties," Progress in Organic Coatings, vol. 9, pp. 281-340, 1981.
[6] D.K. Chattopadhyay, Dean C.Webster, "Thermal Stability and Flame Retardancy of Polyurethanes," Progress in Polymer Science, vol. 34, pp. 1068-1133, 2009.
[7] D.K. Chattopadhyay, K.V.S.N. Raju, "Structural Engineering of Polyurethane Coatings for High Performance Applications," Progress in Polymer Science, vol. 32, pp. 352-418, 2007.
[8] K. Uhlig and D. Dieterich, "Comprehensive Polymer Science: the Synthesis, Characterization, Reactions & Applications of Polymers," Ullmanns Enzyklopädie der Technischen Chemie, vol. 4, pp. 301, 1980.
[9] S. Subramani, I.W. Cheong, J.H. Kim, "Chain Extension Studies of Water-Borne Polyurethanes from Methyl Ethyl Ketoxime/Epsilon-Caprolactam-Blocked Aromatic Isocyanates," Progress in Organic Coatings, vol. 51, pp. 329-338, 2004.
[10] A. Noreen, K.M. Zia, M. Zuber, S. Tabasum, M.J. Saif, "Recent Trends in Environmentally Friendly Water-Borne Polyurethane Coatings: A review," Korean Journal of Chemical Engineering, vol. 33, pp. 388-400, 2016.
[11] C.Z. Yang, K.K.S. Hwang, S.L. Cooper, "Polyurethane ionomers: Order in 4,4’‐methylenedi(phenyl isocyanate) ‐ and hexamethylene diisocyanate‐based poly(ether‐urethane) cationomers," Macromolecular Chemistry and Physics, vol. 184, pp. 651, 1983.
[12] H.J. Fabris, "Thermal and Oxidative Stability of Urethanes," Advances in Urethane Science and Technology, vol. 4, pp. 89-111, 1976.
[13] M. Szycher, "Basic Concepts in Polyurethane Chemistry and Technology," Szycher’s Handbook of Polyurethanes, pp. 2-8, 1999.
[14] D.K. Chattopadhyay, D.C. Webster, "Thermal Stability and Flame Retardancy of Polyurethanes," Progress in Polymer Science, vol. 34, pp. 1068-1133, 2009.
[15] M.M. Rahman, H.D. Kim, and W.K. Lee, "Properties of Crosslinked Waterborne Polyurethane Adhesives with Modified Melamine: Effect of Curing Time, Temperature, and HMMM Content," Fibers and Polymers, vol. 10, pp. 6-13, 2009.
[16] A.B. Dubois, "Fire and Smoke: Understanding the Hazards, National Academy Press," pp. 62-77, 1986.
[17] D. Baral, P.P. De, G.B. Nando, "Thermal Characterization of Micafilled Thermoplastic Polyurethane Composites," Polymer Degradation and Stability, vol. 65, pp. 47-51, 1999.
[18] S. Duquesne, M.L. Bras, S. Bourbigot, R. Delobel, G. Camino, B. Eling, "Mechanism of Fire Retardancy of Polyurethanes Using Ammonium Polyphosphate," Journal of Applied Polymer Science, vol. 82, pp. 3262-74, 2001.
[19] G. Wu, J.Q. Li, Y.J. Luo, "Flame Retardancy and Thermal Degradation Mechanism of a Novel Post-Chain Extension Flame Retardant Waterborne Polyurethane," Polymer Degradation and Stability, vol. 123, pp. 36-46, 2016.
[20] F. Celebi, O. Polat, L. Aras, Güngör Gündüz, I.M. Akhmedov, "Synthesis and Characterization of Water-Dispersed Flame-Retardant Polyurethane Resin Using Phosphorus-Containing Chain Extender," Journal of Applied Polymer Science, vol. 91, pp. 1314-1321, 2004.
[21] P.K. Zhang, Y.H. He, S.Q. Tian, H.J. Fan, Y. Chen, J. Yan, "Flame Retardancy, Mechanical, and Thermal Properties of Waterborne Polyurethane Conjugated with a Novel Phosphorous-Nitrogen Intumescent Flame Retardant," Polymer Composites, vol. 38, pp. 452-462, 2015.
[22] P.K. Zhang, S.Q. Tian, H.J. Fan, Y. Chen, J. Yan, "Flame Retardancy and Hydrolysis Resistance of Waterborne Polyurethane Bearing Organophosphate Moieties Lateral Chain," Progress in Organic Coatings, vol. 89, pp. 170-180, 2015.
[23] W.K. Huang, J.T. Yeh, K.J. Chen, K.N. Chen, "Flame Retardation Improvement of Aqueous-Based Polyurethane with Aziridinyl Phosphazene Curing System," Journal of Applied Polymer Science, vol. 79, pp. 662-673, 2000.
[24] C.H. Shao, J.J. Huang, G.N. Chen, J.T. Yeh, K.N. Chen, "Thermal and Combustion Behaviors of Aqueous-Based Polyurethane System with Phosphorus and Nitrogen Containing Curing Agent," Polymer Degradation and Stability, vol. 66, pp. 359-371, 1999.
[25] G.N. Chen, K.N. Chen, "Self-Curing Behaviors of Single Pack Aqueous-Based Polyurethane System," Journal of Applied Polymer Science, vol. 63, pp. 1609-1623, (1997).
[26] J.J. Feng, Z. Ge, C.P. Chai, S.P. Wang, D.H. Yu, G. Wu,Y.J. Luo, "Flame Retardant Modification of Waterborne Polyurethane Fabric Coating Agent with High Hydrostatic Pressure Resistance," Progress in Organic Coatings, vol. 97, pp. 91-98, 2016.
[27] C.P. Fenimore, F.J. Martin, "Flammability of Polymers," Combustion and Flame, vol. 10, pp. 135-139, 1966.
[28] F. Laoutid, L. Bonnaud, M. Alexandre, J.M. Lopez-Cuesta, P. Dubois, "New Prospects in Flame Retardant Polymer Materials:From Fundamentals to Nanocomposites," Materials Science and Engineering R, vol. 63, pp. 100-125, 2008.
[29] H.S. Park, J. Keun, K. Lee, "Properties of linear elastomeric polyurethanes," Journal of Applied Polymer Science, vol. 34, pp. 1455, 1996.
[30] H.S. Park, H.S. Hahm, E.K. Park, "Preparation and characteristics of two‐component polyurethane flame retardant coatings using 2, 3‐dibromo modified polyesters," Journal of Applied Polymer Science, vol. 61, pp. 421, 1996.
[31] A.I. Balabanovicha, J. Engelmann, "Fire Retardant and Charring Effect of Poly(sulfonyldiphenylene phenylphosphonate) in Poly(butylene terephthalate)," Polymer Degradation and Stability, vol. 79, pp. 85-92, 2003.
[32] K. Yasue, S. Katahira, M. Yoshikawa ,K. Fujimoto, "In Situ Polymerization Route to Nylon 6-Clay Nanocomposites," Polymer-Clay Nanocomposites, pp. 111-126, 2000.
[33] G.M. Wu, Z.W. Kong, C.F. Chen, J. Chen, S.P. Huo, J.C. Jiang, "Crosslinking reaction and properties of two‐component waterborne polyurethane from terpene‐maleic ester type epoxy resin," Journal of Applied Polymer Science, vol. 128, pp. 132-138, 2013.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code