Responsive image
博碩士論文 etd-0527113-124540 詳細資訊
Title page for etd-0527113-124540
論文名稱
Title
砷化銦鎵量子點微碟型雷射
InGaAs Quantum Dots Microdisk Lasers
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
161
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-27
繳交日期
Date of Submission
2013-07-30
關鍵字
Keywords
分佈式布拉格反射鏡、光子分子、量子點、微碟型雷射、耳語模態、奈米粒子、量子點綴於阱
whispering gallery mode, dots-in-a-well, quantum dots, photonic molecules, microdisk laser, nanoparticle, distributed bragger reflector
統計
Statistics
本論文已被瀏覽 5730 次,被下載 0
The thesis/dissertation has been browsed 5730 times, has been downloaded 0 times.
中文摘要
本論文主要是研製以砷化銦鎵量子點綴於阱為增益材料的微碟型雷射,並利用微碟型雷射的耳語模態來增強量子點的自發輻射強度。論文的第一部份是用一系列微碟型共振腔來驗證所研製的雷射,其在室溫可工作的最大波長範圍。這些微碟型雷射其直徑大小約從1.62 μm以每10 nm遞增至1.86 μm,並皆俱有模態數為m=8的第一階耳語模態,同時利用此模態來增強量子點在基態躍遷的自發輻射,經由量測元件在此模態下的雷射譜,其可調變的波長範圍由1180 nm至1263 nm,波長連續可調變的範圍約為80 nm。而在所研製的砷化銦鎵量子點微碟型雷射中,室溫操作下最低的臨界光激發功率為13 μW,且該元件的自發輻射因子β為0.674。第二部份是更進一步利用此寬波段砷化銦鎵量子點來探討垂直耦合雙微碟型雷射所產生的鍵結與反鍵結光模態,總共研製三種不同間隙的垂直耦合雙微碟型雷射,並成功地量得室溫下的光激發雷射譜,而三種光耦合間隙分別為100 nm、200 nm與480 nm。對於光耦合間隙為100 nm與200 nm、直徑約為1.9 μm的雙微碟型雷射,所量到的最低光激發功率分別為70 μW與50 μW,這種光耦合元件可以應用在利用差頻來產生兆赫波的光源。第三部份是將砷化銦鎵量子點微碟型雷射整合在AlAs-GaAs分佈式布拉格反射鏡上,以達到元件在力學上相對穩定及未來發展電激發的目標。經由變溫量測分佈式布拉格反射鏡的反射譜,砷化鋁與砷化鎵的熱光係數在波長為1200 nm附近分別是2.2105×10-4 nm/K 與 2.8789×10-4 nm/K,而此種由AlAs-GaAs分佈式布拉格反射鏡所支撐的砷化銦鎵量子點微碟型雷射,在溫度T=110 K、共振腔直徑為2 μm的元件上,量得的雷射發光波長分別為1040 nm、1090 nm及1146 nm,這三個發光波長所對應的第一階耳語模態數為m=12, 13, 14。最後一部份是探討當金屬奈米粒子放在微碟型雷射上時,在低溫T=80 K時的發光特性,當沒有金屬奈米粒子時,微碟型雷射在第一階耳語模態數為m=22且發光波長為1160 nm時的臨界激發功率約為635 μW,當有金屬奈米粒子時,微碟型雷射在第一階耳語模態數為m=24且發光波長為1098 nm時的臨界激發功率增加至2.45 mW。
Abstract
This thesis describes the fabrication of microdisk lasers that contain gain materials with InGaAs quantum dots. The spontaneous emissions from the specific sizes of quantum dots are enhanced by the whispering gallery modes (WGMs) of the microdisk cavity. First, the lasing wavelength range of InGaAs QDs microdisk cavities is examined. A series of microdisk lasers with diameters that vary in steps of 10 nm from 1.62 μm to 1.86 μm is used, which have a first-order WGM with m=8 enhance the ground state emission of quantum dots in the wavelength range from 1180 nm to 1263 nm. The width of continuous wavelength tuning range is about 80 nm. The lowest threshold power among these QD-containing microdisk lasers is only about 13 μW with a spontaneous emission factor β= 0.674. Second, the bonding and anti-bonding modes of vertically-coupled double microdisk cavities are investigated by utilizing the optical coupling between them. Vertically-coupled double microdisk lasers with three gaps of 100, 200, and 480 nm were fabricated. Room-temperature lasing spectra of the vertically-coupled double microdisks with three gaps but similar diameters around 1.9 μm were obtained. The threshold powers for gaps of 100 nm and 200 nm were approximately 70 μW and 50 μW, respectively. These devices are attractive for use in multiple terahertz light sources based on frequency difference generation. Third, a QD-containing disk cavity is placed on an AlAs/GaAs DBR substrate to develop a mechanically stable current injection structure. The thermo-optical coefficients of AlAs and GaAs for wavelengths around 1200 nm were determined to be 2.2105×10-4 nm/K and 2.8789×10-4 nm/K, respectively. Three emission peaks at 1040 nm, 1090 nm, and 1146 nm were obtained from a DBR-supporting microdisk laser with diameter D=2 μm at T=110 K. These emission peaks were also verified as the first-order WGMs with m=12, 13, and 14. Finally, the emission behaviors of microdisk lasers at T=80 K when a metal nanoparticle is on the top surface of the microdisk cavity are studied. Without the metal NP, the threshold power of the microdisk laser is around 635 μW for the first-order WGM with m=22 at λ=1160 nm. With the metal NP, the threshold power of the microdisk laser is increased to 2.45 mW for the first-order WGM with m=24 at λ=1098 nm.
目次 Table of Contents
Chapter 1 Introduction 1
1.1 Theory of whispering gallery mode resonators 1
1.2 Parameters of the microdisk cavities 3
1.3 Outline of this thesis 7
References 8
Chapter 2 9
Wavelength tunability in compact microdisks with InGaAs quantum dots-in-a-well structure 9
2.1 Introduction to quantum dots 9
2.2 Motivation for tunability of wavelength in DWELL microdisk cavities 13
2.3 Structure and fabrication of InGaAs DWELL 16
2.4 Tunability for InGaAs DWELL structure 22
2.5 Lasing characteristics of a microdisk laser 25
2.6 Refractive index sensing 30
2.7 Time-domain measurement 34
2.8 Summary 39
References 39
Chapter 3 41
Vertically-coupled double microdisk lasers of InGaAs with quantum dots-in-a-well structure 41
3.1 Introduction 41
3.2 InGaAs DWELL wafer structures 44
3.3 Dry etching and fabrication of photonic molecular lasers 52
3.4 Measurements of vertically-coupled double microdisk lasers 58
3.5 Refractive index sensing 67
3.6 Summary 74
References 74
Chapter 4 76
Microdisk cavity laser with InGaAs quantum dots on AlAs/GaAs distributed Bragg reflector 76
4.1 Introduction 76
4.2 Wafer structure for InGaAs quantum dots on AlAs/GaAs DBR 82
4.3 Measurements of the reflectance spectra 83
4.4 Fitting values of the refractive indices for AlAs/GaAs at T=110 K 92
4.5 Fabrication procedure 94
4.6 Lasing spectrum for a pillar microdisk cavity 95
4.7 Influence of etching pair numbers on the cavity’s WGM 100
4.8 Influences of AlAs cracks on the cavity’s WGM 101
4.9 Summary 104
References 105
Chapter 5 108
Lasing modes for microdisk lasers with position-controlled cylindrical metal nanoparticles 108
5.1 Introduction 108
5.2 Fabrication of site-controlled Au88Ge12 cylindrical metal nanoparticles on microdisk cavities 115
5.3 Measurements of microdisk cavities with one nanoparticle 121
5.4 Summary 127
References 127
Appendix A 129
Quantum efficiency enhancement in selectively transparent silicon thin film solar cells by distributed bragg reflectors 129
A.1 Introduction 129
A.2 Distributed Bragg reflector structure designs 132
A.3 Reflectance measurements of distributed Bragg reflector 133
A.4 Measurement results and EQE simulation 136
A.5 EQE simulation 139
A.6 Conclusions 142
Reference 143
Publication list 147
參考文獻 References
Chapter 1
[1] M. Borselli, T. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express, vol. 13, pp. 1515-1530, 2005.
[2] S. L. Mccall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering‐gallery mode microdisk lasers,” Appl. Phys. Lett., vol. 60, pp. 289-291, 1991.
[3] R. D. Kekatpure and M. L. Brongersma, “Fundamental photophysics and optical loss processes in Si-nanocrystal-doped microdisk resonators,” Phys. Rev. A, vol. 78, pp. 023829, 2008.
[4] S Sergent, J C Moreno, E Frayssinet, Y Laaroussi, S Chenot, J Renard, D Sam-Giao, B Gayral, D Néel, S David, P Boucaud, M Leroux and F Semond, “GaN quantum dots in (Al,Ga)N-based Microdisks,” Journal of Physics: Conference Series, vol. 210, pp. 012005, 2010.
[5] N. G. Stoltz, M. Rakher, S. Strauf, A. Badolato, D. D. Lofgreen, P. M. Petroff, L. A. Coldren, and D. Bouwmeester, “High-quality factor optical microcavities using oxide apertured micropillars,” Appl. Phys. Lett., vol. 87, pp. 031105, 2005.
[6] A. Gerardino, M. Francardi, L. Balet, C. Monat, C. Zinoni, B. Alloing, L.H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Fabrication and characterization of point defect photonic crystal nanocavities at telecom wavelength,” Microelectron. Eng., vol. 84, pp. 1480-1483, 2007.

Chapter 2
[1] D. Dragoman and M. Dragoman, “Optical analogue structures to mesoscopic devices,” Prog. Quantum Electron., vol. 23, pp. 131-188, 1999.
[2] D. Bimberg and U. W. Pohl, “Quantum dots: promises and accomplishments,” Mater. Today, vol. 14, pp. 388-397, 2011.
[3] K. J. Luo, J. Y. Xu, H. Cao, Y. Ma, S. H. Chang, S. T. Ho, and G. S. Solomon, “Ultrafast dynamics of InAs/GaAs quantum-dot microdisk lasers,” Appl. Phys. Lett., vol. 78, pp. 3397-3399, 2001.
[4] E. U. Rafailov, M. A. Cataluna, K. Wilcox, and S. A. Zolotovskaya, “Compact ultrafast lasers based on quantum-dot structures,” Proc. SPIE, vol. 7222, pp. 722201, 2009.
[5] J. V. Campenhout, L. Liu, P. R. Romeo, D. V. Thourhout, C. Seassal, P. Regreny, L. D. Cioccio, J. -M. Fedeli, and R. Baets, “A Compact SOI-Integrated multiwavelength Laser Source based on cascaded InP microdisks,” IEEE Photonic Technol Lett., vol. 20, pp. 1345-1347, 2008.
[6] S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Eight-channel microdisk cw laser arrays vertically coupled to common output bus waveguides,” IEEE Photonic Technol Lett., vol. 16, pp. 356-358, 2004.
[7] T. Yang, A. Mock, J. D. O’Brien, S. Lipson, and D. G. Deppe, “Lasing characteristics of InAs quantum dot microcavity lasers as a function of temperature and wavelength,” Opt. Express, vol. 15, pp. 7281-7289, 2007.
[8] T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express, vol. 18, pp. 22747-22761, 2010.
[9] I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express, vol. 16, pp. 1020-1028, 2008.
[10] K. A. Piegdon, S. Declair, J. Förstner, T. Meier, H. Matthias, M. Urbanski, H. -S. Kitzerow, D. Reuter, A. D. Wieck, A. Lorke, and C. Meier, “Tuning quantum-dot based photonic devices with liquid crystals,” Opt. Express, vol. 18, pp. 7946-7954, 2010.

Chapter 3
[1] S. Ishii, A. Nakagawa, and T. Baba, “Modal characteristics and bistability in twin microdisk photonic molecule lasers,” IEEE J. Sel. Top. Quant., vol. 12, pp. 71-77, 2006.
[2] S. N. Ghosh, B. B. Buckley, C. G. L. Ferri, X. Li, F. M. Mendoza, Y. K. Verma, N. Samarth, D. D. Awschalom, and S. Ghosh, “Polarization based control of optical hysteresis in coupled GaAs microdisks,” Appl. Phys. Lett, vol. 97, pp. 011106, 2010.
[3] J. W. Ryu, S. Y. Lee, C. M. Kim, and Y. J. Park, “Directional interacting whispering-gallery modes in coupled dielectric microdisks,” Phys. Rev. A, vol. 74, pp. 013804, 2006.
[4] S. V. Boriskina, “Spectrally engineered photonic molecules as optical sensors with enhanced sensitivity: a proposal and numerical analysis,” J. Opt. Soc. Am. B, vol. 23, pp. 1565-1573, 2006.
[5] S. V. Pishko, P. D. Sewell, T. M. Benson, and S. V. Boriskina, “Efficient analysis and design of low-loss whispering-gallery-mode coupled resonator optical waveguide bends,” J. Lightwave. Technol., vol. 25, pp2487-2494, 2007.
[6] S. Deng, W. Cai, and V. Astratov, “Numerical study of light propagation via whispering gallery modes in microcylinder coupled resonator optical waveguides,” Opt. Express, vol. 12, pp. 6468-6480, 2004.
[7] H. Lin, J. H. Chen, S. S. Chao, M. C. Lo, S. Di. Lin, and W. H. Chang, “Strong coupling of different cavity modes in photonic molecules formed by two adjacent microdisk microcavities,” Opt. Express, vol. 18, pp. 23948-23956, 2010.
[8] D. Y. Chu, M. K. Chin, W. G. Bi, H. Q. Hou, C. W. Tu, and S. T. Ho, “Double-disk structure for output coupling in microdisk lasers,” Appl. Phys. Lett, vol. 65, pp. 3167-3169, 2001.
[9] G. S. Wiederhecker, L. Chen, A. Gondarenko and M. Lipson, “Controlling photonic structures using optical forces,” Nature, vol. 462, pp. 633-636, 2009.
[10] J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics, vol. 3, pp. 478-483, 2009.
[11] X. Jiang, Q. Lin, J. Rosenberg, K. Vahala, and O. Painter, “High-Q double-disk microcavities for cavity optomechanics,” Opt. Express, vol. 17, pp. 20911-20919, 2009.
[12] S. Lee, S. C. Eom, J. S. Chang, C. Huh, G. Y. Sung, and J. H. Shin, “A silicon nitride microdisk resonator with a 40-nm-thin horizontal air slot,” Opt. Express, vol. 18, pp. 11209-11215, 2010.
[13] S. Lee, S. C. Eom, J. S. Chang, C. Huh, G. Y. Sung, and J. H. Shin, “Label-free optical biosensing using a horizontal air-slot SiNx microdisk resonator,” Opt. Express, vol. 18, pp. 20638-20644, 2010.
[14] X. Tu, Y. K. Wu, and L. J. Guo, “Vertically coupled photonic molecule laser,” Appl. Phys. Lett, vol. 100, pp. 041103, 2012.
[15] T. Kitada, F. Tanaka, T. Takahashi, K. Morita, and T. Isu, “GaAs/AlAs coupled multilayer cavity structures for terahertz emission devices,” Appl. Phys. Lett., vol. 95, pp. 111106, 2009.
[16] J. Kim, C. Meuer, D. Bimberg, and G. Eisenstein, “Effect of Inhomogeneous Broadening on Gain and Phase Recovery of Quantum-Dot Semiconductor Optical Amplifiers,” IEEE J Sel Top Quant, vol. 46, pp. 1670-1680, 2010.

Chapter4
[1] M. Francardi, A. Gerardino, L. Balet, N. Chauvin, D. Chauvin, L. Li, B. Alloing, and A. Fiore, “Cavity-enhanced photonic crystal light-emitting diode at 1300 nm,” Microelectron. Eng., vol. 86, pp. 1093-1095, 2009.
[2] Y. H. Kim, S. H. Kwon, J. M. Lee, M. S. Hwang, J. H. Kang, W. I. Park and H. G. Park, “Graphene-contact electrically driven microdisk lasers,” Nat. Commun., 3:1123, doi:10.1038/ncomms2137, (2012).
[3] M. Benyoucef, J.-B. Shim, J. Wiersig, and O. G. Schmidt, “Quality-factor enhancement of supermodes in coupled microdisks,” Opt. Lett., vol. 86, pp. 1317-1319, 2011.
[4] S. J. Jang, Y. M. Song, C. I. Yeo, C. Y. Park, and Y. T. Lee, “Highly tolerant a-Si distributed Bragg reflector fabricated by oblique angle deposition,” Opt. Mat. Lett., vol. 1, pp. 451-457, 2011.
[5] H. M. Ng, D. Doppalapudi, E. Iliopoulos, and T. D. Moustakas, “Distributed Bragg reflectors based on AlN/GaN multilayers,” Appl. Phys. Lett., vol. 74, pp. 1036-1038, 1999.
[6] E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Physica E, vol. 13, pp. 418-412, 2002.
[7] C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M.Gérard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett., vol. 92, p. 0911072, 2008.
[8] M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity,” Phys. Rev. Lett., vol. 89, p. 233602, 2002.
[9] B. Zhang, G. S. Solomon, M. Pelton, J. Plant, C. Santori, J. Vučković, and Y. Yamamoto, “Fabrication of InAs quantum dots in AlAs/GaAs DBR pillar microcavities for single photon sources,” J. Appl. Phys., vol. 97, p. 073507, 2005.
[10] C. Schneider, T. Heindel, A. Huggenberger, T. A. Niederstrasser, S. Reitzenstein, A. Forchel, S. Höfling, and M. Kamp, “Microcavity enhanced single photon emission from an electrically driven site-controlled quantum dot,” Appl. Phys. Lett., vol. 100, p. 091108, 2012.
[11] P. Jaffrennou, J. Claudon, M. Bazin, N. S. Malik, S. Reitzenstein, L. Worschech,
M. Kamp, A. Forchel, and J.-M. Gérard, “Whispering gallery mode lasing in high quality GaAs/AlAs pillar microcavities,” Appl. Phys. Lett., vol. 96, p. 071103, 2010.
[12] B. D. Jones, M. Oxborrow, V. N. Astratov, M. Hopkinson, A. Tahraoui, M. S. Skolnick, and A. M. Fox, “Splitting and lasing of whispering gallery modes in quantum dot micropillars,” Opt. Express, vol. 18, pp. 22578-22592 (2010).
[13] Y. -R. Nowicki-Bringuier, J. Claudon, C. Böckler, S. Reitzenstein, M. Kamp, A. Morand, A. Forchel, and J. M. Gérard, “High Q whispering gallery modes in GaAs/AlAs pillar microcavities,” Opt. Express, vol. 15, pp. 17291-17304, 2007.
[14] S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett., vol. 89, p. 051107, 2006.
[15] C. Y. Jin, O. Kojima, T. Kita, O. Wada, and M. Hopkinson, “Observation of phase shifts in a vertical cavity quantum dot switch,” Appl. Phys. Lett., vol. 98, p. 231101, 2011.
[16] N. Gregersen, T. R. Nielsen, B. Tromborg, and J. Mørk, “Quality factors of nonideal micro pillars,” Appl. Phys. Lett., vol. 91, p. 011116, 2007.
[17] M. Karl, B. Kettner, S. Burger, F. Schmidt, H. Kalt, and M. Hetterich, “Dependencies of micro-pillar cavity quality factors calculated with finite element methods,” Opt. Express, vol. 17, pp. 1144-1158, 2009.
[18] C. C. Chen, M. H. Shih, Y. Y. Yang, and H. C. Kuo, “Ultraviolet GaN-based microdisk laser with AlN/AlGaN distributed Bragg reflector,” Appl. Phys. Lett., vol. 96, p. 151115, 2010.
[19] B. B. Bakir, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Viktorovitch, M.
Zussy, L. D. Cioccio, and J. M. Fedeli, “Room-temperature InAs/InP Quantum Dots laser operation based on heterogeneous “2.5 D” Photonic Crystal,” Opt. Express, vol. 14, pp. 9269-9276, 2006.
[20] C. M. Lim and G. H. Song, “Theoretical demonstration of DBR-assisted super-periodic photonic-crystal light-emitting diodes with narrow divergence angles,” Opt. Commun., vol. 283, pp. 1553-1557, 2010.
[21] E. Y. Lin, T. S. Lay, and T. Y. Chang, “Accurate model including Coulomb-enhanced and Urbach-broadened absorption spectrum of direct-gap semiconductors,” J. Appl. Phys., vol. 102, p. 123511, 2007.
[22] J. Talghader and J. S. Smith, “Thermal dependence of the refractive index of GaAs and AlAs measured using semiconductor multilayer optical cavities,” Appl. Phys. Lett., vol. 66, pp. 335-337, 1995.
[23] F. G. D. Corte, G. Cocorullo, M. Iodice, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of InP, GaAs, and SiC from room temperature to 600 K at the wavelength of 1.5 μm,” Appl. Phys. Lett., vol. 77, pp. 1614-1616, 2000.
[24] J. P. Kim and A. M. Sarangan, “Temperature-dependent Sellmeier equation for the refractive index of AlxGa1−xAs,” Opt. Lett., vol. 32, pp. 536-538, 2007.
[25] J. L. Shen, C. Y. Chang, W. C. Chou, M. C. Wu, and Y. F. Chen, “Temperature dependence of the reflectivity in absorbing Bragg reflectors,” Opt. Express, vol. 9, pp. 287-293, 2001.
[26] M. I. Nathan, G. Burns, S. E. Blum, and J. C. Marinace, “Electroluminescence and Photoluminescence of GaAs at 77°K,” Phys. Rev., vol. 132, pp. 1482–1485, 1963.
[27] J. M. Choi, K. L. Silverman, M. J. Stevens, T. L. Harvey, and R. P. Mirin, “GaAs/AlOx micropillar fabrication for small mode volume photon sources,” J. Vac. Sci. Technol. B, vol. 28, pp. 157-162, 2010.

Chapter 5
[1] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B, vol. 107, pp. 668-677, 2003.
[2] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “Shape-dependent refractive index sensitivities of gold nanocrystals with the same plasmon resonance wavelength,” J. Phys. Chem. C, vol. 113, pp. 17691-17697, 2009.
[3] S. K. Dondapati, T. K. Sau, C. Hrelescu, T. A. Klar, F. D. Stefani, and J. Feldmann, “Label-free biosensing based on single gold nanostars as plasmonic transducers,” ACS Nano, vol. 4, pp. 6318-6322, 2010.
[4] J. -L. Li and M. Gu, “Terahertz-to-infrared converter based on metal nanoparticles: potentialities of applications,” J. Nanophoton., vol. 6, pp. 061716-1, 2012.
[5] J. -L. Li and M. Gu, “Gold-nanoparticle-enhanced cancer photothermal therapy,” IEEE J Sel Top Quant., vol. 16, pp. 989-996, 2010.
[6] H. Weinkauf and B. F. Brehm-Stecher, “Enhanced dark field microscopy for rapid artifact-free detection of nanoparticle binding to Candida albicans cells and hyphae,” Biotechnol. J., vol. 4, pp. 871-879, 2009.
[7] C. L. Haynes, A. D. McFarland, and R. P. V. Duyne, “Surface-Enhanced Raman Spectroscopy,” Anal. Chem., vol. 77, pp. 338 A–346 A, 2005.
[8] R. Weissleder, “A clearer vision for in vivo imaging,” Nat. Biotechnol., vol. 19, pp. 316-317, 2001.
[9] I. Mukherjee, G. Hajisalem, and R. Gordon, “One-step integration of metal nanoparticle in photonic crystal nanobeam cavity,” Opt. Express, vol. 19, pp. 22462-22469, 2011.
[10] B. Koch, Y. Yi, J. Y. Zhang, S. Znameroski, and T. Smith, “Reflection-mode sensing using optical microresonators,” Appl. Phys. Lett., vol. 95, pp. 201111, 2009.
[11] A. Haddadpour and Y. Yi, “Metallic nanoparticle on micro ring resonator for bio optical detection and sensing,” Opt. Express, vol. 1, pp. 378-384, 2010.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.221.53.209
論文開放下載的時間是 校外不公開

Your IP address is 18.221.53.209
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code