Responsive image
博碩士論文 etd-0527113-144215 詳細資訊
Title page for etd-0527113-144215
論文名稱
Title
可調式液晶覆蓋層SOI元件
Tunable Silicon-On-Insulator Devices with Liquid-Crystal Cladding
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
79
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-24
繳交日期
Date of Submission
2013-06-27
關鍵字
Keywords
微環型共振器、液晶、極化轉換器、三維有限差分時域法、絕緣體上的矽
Liquid crystal, Polarization converter, 3D-FDTD, SOI, Microring resonator
統計
Statistics
本論文已被瀏覽 5674 次,被下載 0
The thesis/dissertation has been browsed 5674 times, has been downloaded 0 times.
中文摘要
由於SOI的製程技術與CMOS製程具有高相容性、操作於波長1550 nm時的傳輸損耗低但以及對光的侷限能力強,因此近年來被廣泛地應用於高密度整合積體光路中。一般而言,SOI元件製作完成後,其光學特性也隨之固定,因此本篇論文討論將向列型液晶應用於SOI微環型共振器與極化轉換器的覆蓋層,並透過液晶導軸方向來調變光波導之有效折射率,已達到可調式SOI光子元件之目的。
我們首先使用三維有限差分時域(3D-FDTD)法模擬SOI微環型共振器,並與實驗量測作結果比對,選擇以共振波長來討論微環型共振器的特性。接著將微環型共振器的覆蓋層材料由二氧化矽改為向列型液晶,模擬當向列型液晶不同的導軸方向與填充區域時,環型共振器波長之位移特性。結果顯示向列型液晶導軸方向改變與共振波長位移呈正比線性關係,這是因為導軸方向會影響覆蓋層之有效折射率。此外,向列型液晶填充區域也會影響有效折射率之變化量,使得共振波長具有不同的位移量。當向列型液晶覆蓋全部微環型共振器時,共振波長可調控範圍最大為15.6 nm,而當向列型液晶僅於微環型共振器圈內時,共振波長可調控範圍則僅有2.2 nm。
我們也將向列型液晶加入三角形波導極化轉換器中,並利用液晶導軸方向來改變覆蓋層之有效折射率與極化轉換時所須的半拍長度(Half Beat Length),當半拍長度與元件長度相符時,便能達到最佳之極化消光比。此外,我們也發現與傳統二氧化矽覆蓋層極化轉換器相比,向列型液晶做為覆蓋層之極化轉換器其元件長度的誤差容忍範圍提升三倍,而三角形波導角度的誤差容忍度範圍則增加1.22倍。
Abstract
In recent year, Silicon-On-Insulator (SOI) waveguides have been widely uesd in photonic integrated circuits due to their compatibility with Complementary Metal Oxide Semiconductor (CMOS) fabrication, low transmission loss, and strong confinement for the high index contrast. As the SOI devices are fabricated, it is hard to change their optical characteristics owing to the fixed geometry. In this thesis, nematic liquid crystals (NLCs) are employed as the cladding of SOI microring resonators and polarization converters to realize tunable SOI devices by adjusting the director axis of the NLCs.
We adopt a three dimensional finite-difference time-domain (3D-FDTD) method to obtain the transmission spectra of the tunable SOI microring resonators with NLC claddings. The results show that the resonant wavelength can be tuned by varying the direction of NLCs. The maximal tuning range of SOI microring resonators with NLC claddings is around 15.6 nm. However, if the NLCs are filled only inside the microring resonator, the maximal tuning range decreases to 2.2 nm.
As for the polarization converter formed by a triangle waveguide with a NLC cladding, the effective index of cladding and the half beat length can be controlled by varying the direction of NLCs. As the half beat length is closed to the length of the polarization converter, a better polarization extinction ratio can be achieved. In addition, the fabrication tolerance of polarization converters with NLC claddings is better than that of polarization converters with silicon oxide claddings. The fabrication tolerance of converter length and waveguide angle can be enhanced to three times longer and 1.22 times larger, respectively.
目次 Table of Contents
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .v
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
圖目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
第一章 緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
1-1 SOI光波導介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
1-2 微環型共振器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
1-3 極化分極系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
1-4 極化轉換器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
1-5 可調式光子元件. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
1-6 液晶特性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
1-7 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
第二章 數值模擬分析方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
2-1 波束傳播法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
2-2 有限差分時域法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
第三章 SOI可調控式微環型共振器之數值分析. . . . . . . . . . . . . . . . .25
3-1 微環型共振器之實驗量測與數值模擬. . . . . . . . . . . . . . . . . . . . . .25
3-2 向列型液晶覆蓋層微環型共振器之特性分析. . . . . . . . . . . . . . . .28
3-3 向列型液晶於微環型共振器圈內之特性分析. . . . . . . . . . . . . . . .32
第四章 SOI可調控式極化轉換器之數值分析. . . . . . . . . . . . . . . . . . .37
4-1 極化轉換之特性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
4-2 三角形非對稱波導極化轉換器. . . . . . . . . . . . . . . . . . . . . . . . . . . .40
4-3 向列型液晶覆蓋層極化轉換器之特性分析. . . . . . . . . . . . . . . . . .45
4-4 向列型液晶覆蓋層極化轉換器之製程容忍度. . . . . . . . . . . . . . . .53
第五章 結論與未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
參考文獻 References
[1] S. E. Miller, “Integrated optics: an introduction,” Bell Syst. Tech. J., Vol. 48, pp. 2059-2068, 1969.
[2] Z. Zhang, M. Dainese, L. Wosinski, and M. Qiu, “Resonance-splitting and enhanced notch depth in SOI ring resonators with mutual mode coupling”, Opt. Express, Vol. 16, Issue 7, pp. 4621-4630, 2008.
[3] P. Cheben, J. H. Schmid, A. Delâge, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, and D. –X. Xu, “A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with submicrometer aperture waveguides”, Opt. Express, Vol. 15, Issue 5, pp. 2299-2306, 2007.
[4] S. L. Tsao, H. C. Guo, and C. W. Tsai, “A novel 1 × 2 single-mode 1300/1550 nm wavelength division multiplexer with output facet-tilted MMI waveguide”, Opt. Commun., Vol. 232, pp. 371-379, 2004.
[5] H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanbe, H. Shinojima, and Sei-ichi Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides”, Opt. Express, Vol. 14, Issue 25, pp. 12401-12408, 2006.
[6] Z. Wang, and D. Dai, “Ultrasmall Si-nanowire-based polarization rotator”, J. Opt. Soc. Am. B: Opt. Phys., Vol. 25, Issue 5, pp. 747-753, 2008.
[7] R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron., Vol. 27, Issue 8, pp. 1971-1974, 1986.
[8] K. Nemoto, “Narrow spectral linewidth wave tunable laser with Si photonic-wire
Waveguide ring resonators,” GFP, IEEE 9th Internation conference on, pp. 216-218, 2012.
[9] M. K. Chin and S. T. Ho, “Design and modeling of waveguide-coupled single-mode microring resonators,” IEEE J. Lightwave Technol., Vol. 15, Issue 8, pp.1433-1446, 1998.
[10] M. W. Geis, S. J. Spector, R.C. Williamson, and T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photon. Technol. Lett., Vol. 16, Issue 11, pp. 2514-2516, 2004.
[11] T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE. Photon. J., Vol. 1, Issue 3, pp. 197-204, 2009.
[12] K. Okamoto, Fundamentals of optical waveguides, second edition, Academic Press, New York, 2005.
[13] D. G. Rabus, Integrated ring resonators: the compendium, first edition, Springer, Berlin, 2007.
[14] T. Barwicz, M. R. Watts, M. A. Popovi’c, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “ Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, pp. 57-60, 2006.
[15] S. S. A. Obayya, N. Somasiri, M. Rajarajan, K. T. V. Gratten, and H. A. EI-Mikathi, “Design and characterization of compact sigle-section passive polarization rotator,” IEEE. Photon. J., Vol. 19, Issue 4, pp. 512-519, 2001.
[16] J. Zhang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon-waveguide-based mode evolution polarization rotator”, IEEE J. Sel. Topics Quantum Electron., Vol. 16, pp. 53-60, 2010.
[17] M. F. O. Hameed and S. S. A. Obayya, “Analysis of polarization rotator based on nematic liquid crystal photonics crystal fiber,” IEEE J. Lightwave Technol., Vol. 28, Issue 5, pp.806-815, 2010.
[18] L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits,” Opt. Express, Vol. 19, Issue 13, pp. 12646-12651, 2011.
[19] Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express, Vol. 15, Issue 2, pp. 430-436, 2007.
[20] A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, pp. 615-618, 2004.
[21] Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, pp. 325-327, 2005.
[22] G. Gunn, “CMOS photonicsTM – SOI learns a new trick,” in Proceedings of IEEE International SOI Conference, pp. 7-13, 2005.
[23] R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron., Vol. 23, Issue 1, pp. 123-129, 1987.
[24] P. Dong, R. Shafiiha, S. Liao, H. Liang, Ning-Ning Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Wavelength-tunable silicon microring modulator,” Opt. Express, Vol. 18, Issue 11, pp. 10941-10946, 2010.
[25] S. Chandrasekhar, Liquid crystals, Second edition, Cambridage University Press, England, 1993.
[26] H. Takeda and K. Yoshino, “Tunable photonic band schemes of opals and inverse opals infiltrated with liquid crystals,” J. Appl. Phys., Vol. 92, Issue 10, pp. 5658-5662, 2002.
[27] S. Mathews, G. Farrell, and Y. Semenova, “Liquid crystal infiltrated photonic crystal fibers for electric field intensity measurements,” Appl. Opt., Vol. 50, Issue 17, pp. 2628-2635, 2011.
[28] V. K. Hsiao and C. Y. Ko, “Light-controllable photoresponsive liquid-crystal photonic crystal fiber,” Opt. Express, Vol. 16, Issue 17, pp. 12670-12676, 2008.
[29] M. D. Feit and J. A. Fleck, Jr., “Light propagation in graded-index fiber,” Appl. Opt., Vol. 17, Issue 24, pp. 3990-3998, 1978.
[30] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat., Vol. 14, Issue 3, pp. 302-307, 1966.
[31] J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comp. Phys., Vol. 114, Issue 2, pp. 185-200,1994.
[32] C. E. Reuter, R. M. Joseph, E. T. Thiele, D. S. Katz, and A. Taflove, “Ultrawideband absorbing boundary condition for termination of waveguiding structures in FD-TD simulations,” IEEE Microwave Guided Wave Lett., Vol. 4, Issue 10, pp. 344-346, 1994.
[33] A. Taflove and S. C. Hagness, Compatational electrodynamics the finite-difference time-domain method, Third Edition, Artech House, Boston, 2005.
[34] Data from National Sun Yat-Sen University Department of Photonics, Integrated Photonics Communications and Interconnect Lab.
[35] H. G. Jerrard, “Modern description of polarized light: matrix methods,” Opt. and Laser Technol., Vol. 14, Issue 6, pp. 309-319, 1982.
[36] M. Mrozowski, “Guided electromagnetic waves: properties and analysis,” England: Research Studies Press Ltd. John Wiley and Sons Inc., 1997.
[37] J. P. Gordon and H. Kogelnik, “PMD fundamentals: Polarization mode dispersion in optical fibers,” Proceedings of the National Academy of Science of the United
in optical fibers,” Proceedings of the National Academy of Science of the United States of America (PNAS), Vol. 97, no. 9, pp. 4541-4550, 2000.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 54.160.243.44
論文開放下載的時間是 校外不公開

Your IP address is 54.160.243.44
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code