Responsive image
博碩士論文 etd-0527113-160500 詳細資訊
Title page for etd-0527113-160500
論文名稱
Title
底床邊界層紊流與能量消散之研究
Turbulence and energy dissipation in boundary layer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
90
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-05-28
繳交日期
Date of Submission
2013-06-27
關鍵字
Keywords
紊流動能消散率、底床剪應力、雷諾數、摩擦速度、拖曳係數
dissipation rate of turbulent kinetic energy, bed shear stress, Reynolds number, drag coefficient, friction velocity
統計
Statistics
本論文已被瀏覽 5700 次,被下載 391
The thesis/dissertation has been browsed 5700 times, has been downloaded 391 times.
中文摘要
本研究利用Acoustic Doppler Velocimeter (ADV)、流剖儀、波浪儀等儀器,在淺水珊瑚礁的後壁湖及後灣沿岸海域進行底邊界層紊流的量測,探討紊流動能消散率ε以及剪應力τ等紊流特性。首先進行ADV資料前置處理項目,包含:Despike、數據有效性判斷、座標系轉換以及消除波浪訊號。
紊流具有時間與空間上的廣闊分佈範圍,對此現象常採用能譜來做分析,而斜率-5/3的能譜走向以及慣性區間涵蓋範圍與平均流的大小有正向關係。觀察紊流動能消散率ε的變化,後壁湖珊瑚礁實驗是屬於碎波帶以淺,海流很小且為波浪主導的海域,由於受到粗糙底床的影響,ε的觀測值約為 W/kg,它會隨著水位和波高的大小而有正向的週期變化。後灣實驗則是屬於潮流和風浪所主導的海域,海流較強,底床剪切造成擾流,ε的觀測值約為 W/kg。另一方面,利用ε可計算整個水體的平均紊流動能消散率 ,結果得知淺水珊瑚礁海域的波浪能量消散 和紊流動能消散率具有高度的關連性。
利用三種方法計算底床剪應力τ,藉由修正過後的摩擦速度 其值增加約60%,使ID法所計算出的τ,在高雷諾數且紊流發展較完全的淺水珊瑚礁海域,能與波高趨勢吻合;但由於慣性區間的擷取上不具公式性、系統性,其準確度可能隨著低雷諾數或紊流發展不完全等因素而逐漸降低;在EC法方面,當雷諾數太小時,會使得底床剪應力等於雷諾應力之假設不成立,導致EC法計算結果不準確。故本文認為,利用變動速度所計算出的紊流動能(TKE)來討論τ應是最理想、最通用的方式。拖曳係數Cd與平均流速變化存有明顯的對應關係,因此並不適用於受波浪影響明顯的海域。
Abstract
In this study, Acoustic Doppler Velocimeter (ADV), current profiler and wave gauge were used to measure the turbulent kinetic energy dissipation rate (ε) and shear stress (τ) in Hobi shallow coral reef and Howan coastal waters. Data pre-processing including despike, data quality check, coordinate transformation and filtering of wave signal were applied.
The inertial dissipation (ID) method is commonly used to estimate the turbulence due to its broad distribution in the frequency domain. The spectral slope of -5/3 and its frequency range within the inertial sub-range can be clearly seen with the increasing flow speed. At the Hobi coral reef which is situated shoreward of the surf zone characterized by small currents and large waves, the observed values of ε are O(〖10〗^(-5)-〖10〗^(-3))W/kg and vary in phase with the tide and wave height. On the other hand, the Howan experiment is dominated by unidirectional flows and wind waves, turbulence is generated at the bed by shear flows, and the observed values of ε are O(〖10〗^(-5)-〖10〗^(-4))W/kg. The average turbulent kinetic energy dissipation rate ε_BL, estimated directly from the observed ε with a bottom boundary layer scaling, indicates that a close correlation exists between the wave energy dissipation rate D_wave and turbulence dissipation.
Three methods were used to estimate the bed shear stress and their results are inter-compared. When the Reynolds number is smaller and wave-current interaction is important, correction of the friction velocity u_* by the ID method is required. As a result, an increase of τ by approximately 60 percent shows better correlation with the wave height. However, the applicability and reliability of the ID method become worse as the Reynolds number decrease and turbulence is not fully developed. The EC method will not produce reasonable values of bed shear stress when the Reynolds number is not sufficiently high and the turbulence is not fully developed. Finally, estimating τ by the turbulent kinetic energy (TKE) method with velocity fluctuations is considered be the best and most common method for this study. The drag coefficient Cd is found to be close correlated with the mean flow, but it is not suited for the wave-dominated shallow reefs.
目次 Table of Contents
摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 ix
緒論……………………………………………………………………………1
1-1. 前言…………………………………………………………………………1
1-2. 底床邊界層動力結構………………………………………………………1
1-3. 前人研究……………………………………………………………………2
1-4. 研究動機……………………………………………………………………4
實驗設計………………………………………………………………………6
2-1. 實驗地點……………………………………………………………………6
2-2. 儀器介紹……………………………………………………………………6
2-3. 實驗配置……………………………………………………………………7
2-4. 氣候資料來源………………………………………………………………8
2-5. 回聲強度……………………………………………………………………9
數據前置處理…………………………………………………………………15
3-1. ADV數據處理……………………………………………………………15
3-2. Despike……………………………………………………………………15
3-2.1. Spike判斷…………………………………………………………15
3-2.2. Spike替代…………………………………………………………17
3-3. 數據有效性判斷…………………………………………………………21
3-4. 座標系轉換………………………………………………………………25
3-5. 消除波浪訊號……………………………………………………………28
3-5.1.Butterworth…………………………………………………………28
3-5.2. 快速傅立葉轉換…………………………………………………28
3-6. ADV資料處理程序………………………………………………………33
分析方法………………………………………………………………………34
4-1. 剪應力……………………………………………………………………34
4-1.1. 渦流相關法………………………………………………………34
4-1.2. 紊流動能法………………………………………………………35
4-1.3. 慣性消散法………………………………………………………35
五、結果與討論………………………………………………………………………40
5-1. 三個實驗的海流特性……………………………………………………40
5-1.1. 垂直剖面下的海流狀態…………………………………………41
5-1.2. 垂直剖面回聲強度變化…………………………………………42
5-2. 能量消散…………………………………………………………………46
5-2.1. 波浪能量消散……………………………………………………46
5-2.2. 底床摩擦消散率…………………………………………………47
5-2.3. 近岸淺水珊瑚礁海域的平均紊流動能消散率…………………52
5-2.4. 利用頻譜計算示性波高…………………………………………53
5-3. 底床邊界層紊流動能消散率……………………………………………54
5-3.1. 三個實驗的能譜與ε結果分析……………………………………54
5-3.2. 平均紊流動能消散率(ε^* 、ε_BL)與D_wave之結果比較……………60
5-4. 底床剪應力………………………………………………………………65
5-4.1. 三個實驗的底床剪應力結果分析………………………………65
5-4.2. 拖曳係數…………………………………………………………70
六、結論………………………………………………………………………………72
七、參考文獻…………………………………………………………………………74
參考文獻 References
李佳娜, 2005:潮汐與波浪之互動對邊界層之影響,碩士論文,國立中
山大學海洋地質及化學研究所。
陳育村, 2007:海流及波浪對於ADCP回聲強度影響之研究,碩士論文,
國立中山大學海洋物理研究所。
魯遠征, 2011:層化發育下黃茅海河口灣潮汐底邊界層流特徵,碩士論
文,廣州中山大學物理海洋學。
高郁峰, 2012:沿岸海域底床剪應力特性之研究,碩士論文,國立中山
大學海洋生物科技暨資源學系研究所。
Ali, A., Lemckert, C. J., 2009:A traversing system to measure bottom boundary layer hydraulic properties, Estuarine, Coastal and Shelf Science, Vol. 83, 425-433.
Chanson, H., Trevethan, M., Aoki S., 2008:Acoustic Doppler Velocimetry (ADV) in small estuary:Field experience and signal post-processing, Flow Measurement and Instrumentation, Vol. 19, 307-313.
Falter, J. L., Atkinson, M. J., Merrifield, M. A., 2004:Mass-transfer limitation of nutrient uptake by a wave-dominated reef flat community, Limnology and oceanography, Vol. 49(5), 1820-1831.
Feddersen, F., Trowbridge, J. H., Williams III, A. J., 2007:Vertical structure of dissipation in the nearshore, Journal of Physical Oceanography, Vol. 37, 1764-1777.
Green, M. O., 1992:Spectral estimates of bed shear stress at subcritical Reynolds numbers in a tidal boundary layer, Journal of Physical Oceanography, Vol. 22, 903-917.
Goring, D. G., Nikora, V. I., 2002:Despiking Acoustic Doppler Velocimeter Data, Journal of Hydraulic Engineering, Vol. 128(1), 117-126.
Huntley, D. A., Hazen, D. G., 1988:Seabed Stresses in Combined Wave and Steady Flow Conditions on the Nova Scotia Continental Shelf:Field Measurements and Predictions, Journal of Physical Oceanography, Vol. 18, 347-362.
Huntley, D. A., 1988:A modified inertial dissipation method for estimating seabed stresses at low Reynolds numbers, with application to wave-current boundary-layer measurements, Journal of Physical Oceanography, Vol. 18, 339-346.
Holthuijsen, L. H., 2007:Waves in oceanic and coastal waters, Cambridge University Press.
Hubert, C., Maiko, T., Mark, T., 2008:Using turbidity and acoustic backscatter intensity as surrogate measures of suspended sediment concentration in a small subtropical estuary, Journal of Environmental Management, Vol. 88, 1406-1416.
Huang, Z. C., Lenain, L., Melville, W. K., Middleton, J. H., Reineman, B., Statom, N., McCabe R. M., 2012:Dissipation of wave energy and turbulence in a shallow coral reef lagoon, Journal of Geophysical Research, Vol. 117, C03015.
Klein, Y, H., Voulgaris, G., 2003:Estimation of suspended sediment concentration in estuarine environments using acoustic backscatter from an ADCP, Coastal Sediments, ASCE.
Kim, S. C., Friedrichs, C. T., Maa, J. P.-Y., Wright, L. D., 2000:Estimating bottom stress in tidal boundary layer from acoustic Doppler velocimeter data, Journal of Hydraulic Engineering, Vol. 126, 399-406.
Lowe, R. J., Falter, L., Bandet M. D., Pawlak, G. Atkinson, Ma. J., Monismith, S. G., Koseffl, J. R., 2005:Spectral wave dissipation over a barrier reef, Journal of Geophysical Research, Vol. 110(C4), C04001.
Lumley, J. L., Terray, E. A., 1983:Frequency spectra of frozen turbulence in a random wave filed, Journal of Physical Oceanography, Vol. 13, 2000-2007.
Liu, H., Wu, C., Xu, W., Wu, J., 2009:Contrasts between estuarine and river system in near-bed turbulent flows in the Zhujiang (Pearl River) Estuary, China, Estuarine, Coastal and Shelf Science, Vol. 83, 591-601.
Lugo-Fernandez, A., Roberts, H, H., Wiseman, W. J., Carter, B. J., 1998:Water Level and currents of tidal and infragravity periods at Tague Reef, Coral Reefs, Vol. 17, 343-349.
Mathisen, P. P., Madsen, O. S., 1999:Wave and currents over a fixed ripped bed:3. Bottom and apparent roughness for spectral waves and currents, Journal of Geophysical Research, Vol. 104(C8), 18447-18461.
Nielsen, P., 1992:Coastal Bottom Boundary Layers and Sediment Transport, World Scientific., Singapore.
Nelson, R. C., 1996:Hydraulic roughness of coral reef platforms, Applied ocean research, Vol. 18(5), 265-274.
Nortek, 2001:Monitoring Sediment Concentration with acoustic backscattering instruments, Nortek As.
Parsheh, M., Sotiropoulos, F., Porte-Agel, F., 2010:Estimation of power spectra of acoustic-doppler velocimetry data contaminated with intermittent spikes, Journal of Hydraulic Engineering, Vol. 136(6), 368-378.
Reidenbach, M. A., Monismith, S. G., Koseff, J. R., Yahel, G., Genin, A., 2006:Boundary layer turbulence and flow structure over a fringing coral reef, Limnology Oceanography, Vol. 51(5), 1956-1968.
Reidenbach, M. A., Koseff, J. R., Koehl, M. A. R., 2009:Hydrodynamic forces on larvae affect their settlement on coral reef in turbulent wave-driven flow, Limnology Oceanography, Vol. 54(1), 318-330.
Ruessink, B. G. 2010:Observation of Turbulence within a Natural Surf Zone, Journal of Physical Oceanography, Vol. 40(12), 2696-2712.
Soulsby, R. L., Dyer, K. R., 1981:The form of the near-bed velocity profile in a tidally accelerating flow, Journal of Geophysical Research, Vol. 86(C9), 8067-8074.
Stapleton, K. R., Huntley, D. A., 1995:Seabed stress determinations using the Inertial Dissipation method and the Turbulent Kinetic Energy method, Earth Surface Processes and Landforms, Vol. 20, 807-815.
Tennekes, H., Lumley, J. L., 1972:A first course in turbulence, MIT Press, Cambridge, Mass, 300pp.
Thornton, E. B., Guza, R. T., 1983:Transformation of wave height distribution, Journal of Geophysical Research, Vol. 88, 5925-5938.
Thorpe S. A., 2005: An Introduction to Ocean Turbulence, Cambridge University Press, 485 pp.
Taebi, S., Lowe, R. J., Pattiaratchi, C. B., Ivey, G. N., Symonds, G., Brinkman, R., 2011:Nearshore circulation in a tropical fringing reef system, Journal of Geophysical Research-Oceans, Vol. 116,C02016.
Xu, J. P., Wright, L. D., Boon, J. D., 1994:Estimation of bottom stress and roughness in Lower Chesapeake Bay by the inertial dissipation method, Journal of Coastal Research, Vol. 10(2), 329-338.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code