Responsive image
博碩士論文 etd-0527114-084616 詳細資訊
Title page for etd-0527114-084616
論文名稱
Title
以化學汽相沉積法在(100)鋁酸鋰基板上成長氧化鋅奈米帶
Growth of Zinc Oxide Nano-belts on(100)γ-LiAlO2 Substrate by Chemical Vapor Deposition.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
56
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-25
繳交日期
Date of Submission
2014-06-27
關鍵字
Keywords
非極性m-plane氧化鋅、鋁酸鋰、化學汽相沉積法、汽-液-固三相成長機制
γ-LiAlO2, Non polar m-plane zinc oxide, chemical vapor deposition, vapor-liquid-solid growth mechanism
統計
Statistics
本論文已被瀏覽 5649 次,被下載 350
The thesis/dissertation has been browsed 5649 times, has been downloaded 350 times.
中文摘要
本文以化學汽相沉積法在(100)面γ-相的鋁酸鋰(γ-LiAlO2,LAO)基板上成長非極性m-plane氧化鋅奈米帶。本實驗以氧化鋅與石墨的粉末混合物作為反應源前驅物,氬氣與氧氣分別為載送氣體與氣體反應源,在基板上鍍金作為催化劑,成長氧化鋅奈米材料。
實驗過程探討了反應溫度和反應源配比,以及反應氣體流量,三組實驗條件對於氧化鋅奈米材料生長的影響。
我們使用X光繞射儀(X-Ray Diffractometer,XRD)與掃瞄式電子顯微鏡(Scanning Electron Microscopy,SEM)來分析其生長方向與表面形貌。並利用穿透式電子顯微鏡(Transmission Electron Microscope, TEM)、光激發光譜儀(Photoluminescence Spectroscope, PL)、拉曼光譜(Raman Spectroscope, Raman)來分析奈米結構的結晶特性、試片的發光性質、試片的內應力,並探討氧化鋅奈米帶的成長機制。
Abstract
In this thesis, we use (100) γ-LiAlO2 (LAO) substrates to grow non polar m-plane zinc oxide nano-belt by chemical vapor deposition (CVD) process. The zinc oxide and graphite powder mixture was adopted as reaction source, argon and oxygen were used as transport gas and reaction gas. A thin layer of Au was deposite on the substrate as catalyst for vapor-liquid-solid (VLS) growth mechanism.
In this study, we investigate the influence of reaction temperature and zincoxide/graphite source ratio to the growth of zinc oxide nano-belts. The orientation and surface morphology of the specimen was investigate by X-ray diffractometer (XRD) and scanning electron microscopy (SEM). By using Transmission Electron Microscope (TEM), Photoluminescence Spectroscope (PL), and Raman Spectroscope (Raman), we can obtain the crystallization characteristics, optical properties and inner stress of the specimen, so the growth mechanism of the zinc oxide nano-belts can be investigated.
目次 Table of Contents
論文審定書................................................................................................................i
誌謝..........................................................................................................................ii
摘要..........................................................................................................................iii
Abstract....................................................................................................................iv
第一章 序論..............................................................................................................1
第二章 文獻回顧與理論基礎.......................................................................................2
2.1氧化鋅(Zinc Oxide, ZnO)的結構與性質..................................................................2
2.2鋁酸鋰(LiAlO2, LAO)的結構與性質.......................................................................4
2.3 Vapor-Liquid-Solid (VLS) 成長機制......................................................................5
2.4化學汽相沉積法(Chemical Vapor Deposition, CVD)................................................8
2.5研究動機...........................................................................................................10
第三章 實驗內容.......................................................................................................11
3.1實驗流程...........................................................................................................11
3.2實驗裝置...........................................................................................................11
3.3實驗步驟...........................................................................................................12
3.4分析原理...........................................................................................................13
第四章 實驗結果.......................................................................................................15
4.1 改變升溫模式....................................................................................................15
4.2 改變配比的影響.................................................................................................17
4.2.1 表面形貌分析.................................................................................................17
4.2.2 結晶方向分析.................................................................................................17
4.3 在較高溫度下改變配比的影響.............................................................................18
4.3.1 表面形貌分析.................................................................................................18
4.3.2 結晶方向分析.................................................................................................18
4.4固定反應源配比改變反應溫度..............................................................................19
4.4.1 表面形貌分析.................................................................................................19
4.4.2 結晶方向分析.................................................................................................19
4.5 PL 光譜(Photoluminescence spectrum)結果分析..............................................30
4.6 拉曼光譜(Raman spectrum, Raman)結果分析..................................................32
4.7 TEM結果分析....................................................................................................33
第五章 結論...............................................................................................................40
參考文獻...................................................................................................................41
參考文獻 References
1. A. Tsukazaki, A. Ohtomo, T, Ohnuma, M. Ohtani, T. Makino, M. Sumiya, K.Ohtani, S.F. Chichibu, S. Fuke, Y.Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, Nat. Mater. 4 (2005) 42.
2. P.Zu, Z.K.Tang, G. K. L. Wang, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Solid State Commun. 103 (1997) 459.
3. X. M. Fang, J. S. Liang, L. Zhao, and Y. h. Liu, Appl. Sur. Sci. , 15 (2005) 420.
4. Z. Zhang, J. Huang, H. He, S. Lin, H. Tang, and H. Lu, Z. Ye, Solid-State Electronics, 53 (2009) 578.
5. A.Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, Appl. Phys. Lett. 72 (1998) 2466.
6. T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, and H. Koinuma, Appl. Phys. Lett. 78 (2001) 1237.
7. M. W. Ahn, K. S. Park, J. H. Heo, D. W. Kim, K. J. Choi, and J. G. Park, Sens. Actuators B: Chem, 138 (2009) 168.
8. I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, and N. Sawaki, J. Cryst. Growth, 98 (1989) 209.
9. J. S. Park, S. K. Homg, and T. Minegishi, Appl. Sur. Sci, 254 (2008) 7786.

10. P. Fons, K. Iwata, A. Yamada, K. Matsubara, S. Niki, K. Nakahara, T. Tanabe and H. Takasu, Appl. Phys. Lett. 77 (2000) 1801.
11. B. Wang, M. J. Callahan, C. Xu, L. O. Bouthillette, N. C. Giles, and D. F. Bliss, J. Cryst. Growth, 304 (2007) 73.
12. J. Zhao, L. Hu, Z. Wang, H. Zhang, Y. Zhao, and X. Liang, J. Cryst. Growth, 280 (2005) 455.
13. M. M. C. Chou, L. W. Chang, H. Y. Chung, T. H. Huang, J. J. Wu, and C. W. Chen, J. Cryst. Growth, 308 (2007) 412.
14. S. Liu, S. Zhou, Y. Wang, and X. Zhang, J. Cryst. Growth, 292 (2006) 125.
15. T. Makino, K. Tamura, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, and H. Koinuma, J. Appl. Phys, 92 (2002) 7157.
16. M. J. Ying, X. L. Du, Y. Z. Liu, Z. T. Zhou, Z. Q. Zheng, Z. X. Mei, J. F. Jia, H. Chen, and Q. K. Xue, Appl. Phys. Lett, 87 (2005) 202107.
17. Pearson’s Handbook of Crystallographic Data, 4795
18. H. Krazel, Phys. Rev. B53, (1996) 11425.
19. D. P. Norton, Y. W. Heo, M. P. Ivill, K. Ip, S. J. Pearton, M. F. Chisholm, and T. Steiner, Materials Today, 7 (2004) 34.
20. K. Maeda, M. Sato, I. Niikura and T. Fukuda, Semicond. Sci. Technol. 20 (2005) S49
21. K. P. Bhuvana, J. Elanchezhiyan, N. Gopalakrishnan, and B. C. Shin, J. Alloys Compd. 478 (2009) 54.
22. D. P. Norton, Y. W. Heo, M.P. Ivill, K. Ip, S.J. Pearton, M.F. Chisholm, and T. Steiner, Mater. Today, 7 (2004) 34.
23. R. Dronskowski, Inorg. Chem., 32 (1993) 1.
24. L. Lei, D. He, Y. Zou, W. Zhang, Z. Wang, M. Jiang, and M. Du, Journal of Solid State Chemistry, 181 (2008) 1810.
25. 黃惠君,“鋁酸鋰晶體微結構缺陷分析之研究”,國立中山大學材料科學研究所博士論文(2008)。
26. B. Cockayne and B. Lent, Journal of Crystal Growth, 54 (1981) 546.
27. M.M.C. Chou, H.C. Huang, D. Gan, and C.W.C. Hsu, Journal of Crystal Growth, 291 (2006) 485.
28. R.S. Wagner, W. C. Ellis, Appl. Phys. Lett., 4 (1964) 89.
29. J. W. -S., J. H. -U., Cryst. Growth, 285 (2005) 566.
30. W. F. Li, X. L. Ma, W. S. Zhang, W. Zhang, Y. Li, Z. D. Zhang, Phys. Status. Solidi. A, 203 (2006) 294.
31. T. J. Kuo, M. H. Huang, J. Phys. Chem. B, 110 (2006) 13717.
32. J. R. Morber, Y. Ding, M. S. Haluska, Y. Li, P. Liu, Z. L. Wang, J. Phys. Chem. B, 110 (2006) 21672.
33. V. G. Dubrovskii, N. V. Sibirev, G. E. Cirlin, J. C. Harmand, V. M. Harmand, Phys. Rev. E, 73 (2006) 21603.
34. J. Johansson, B. A. Wacaser, K. A. Dick, W. Seifert, Nanotechnology 17 (2006) S355.
35. K. A. Dick, K. Deppert, L. S. Karlsson, L. R. Wallenberg, L. Samuelson, W. Seifert, Adv. Func. Mater., 15 (2005) 1603.
36. J. C. Harmand, G. Patriarche, P. –L. N., M. –C. M. –N., L. Travers, F. Glas, Appl. Phys. Lett. 87 (2005) 203101.
37. A. I. Persson, M. W. Larsson, S. Stenstrom, B. J. Ohlsson, L. Samuelson, L. R. Wallenberg, Nature Mater, 3 (2004) 677.
38. D. Tham, C. Y. Nam, K. Byon, J. Kim, J. E. Fischer, Appl. Phys. A 85 (2006) 227.
39. F. D. Wang, A. G. Dong, J.W. Sun, R. Tang, H. Yu, W. E. Buhro, Inorg. Chem., 45 (2006) 7511.
40. C. B. Jiang, B. Wu, Z. Q. Zhang, L. Lu, S. X. Li, S. X. Mao, Appl. Phys. Lett., 88 (2006) 93103.
41. B. Wang, Y. H. Yang, G. W. Yang, Nanotechnology, 17 (2006) 4682.
42. H. J. Fan, P. Werner, M. Zacharias, Small 2 (2006) 700.
43. W. Lu, C. M. Lieber, J. Phys. D: Appl. Phys. 39 (2006) R387.
44. J. K. P. De, J. W. Geus, Catal. Rev. 42 (2000) 481.
45. H. Morkoc and Ü. Özgür, “Zinc Oxide: Fundamentals, Materials and Device Technology”, (Wiley-VCH, 2009).
46. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science, 292 (2001) 1897.
47. Y. K. Rao, “Stoichiometry and Thermodynamics of Matallurgical Processes”, Cambridge University Press, New York (1985).
48. Y. Wei, Y. Ding, C. Li, S. Xu,; J.H. Ryo, R. Dupuis, A.K. Sood, D.L. Polla, and Z.L. Wang, J. Phys. Chem. C, 112 (2008) 18935.
49. C. E. Morosanu, “Thin Films by Chemical Vapor Deposition”, (1990) pp.102-107.
50. H. O. Pierson, “Handbook of Chemical Vapor Deposition”, Second Edition, (1999) pp. 12-31.
51. 蘭彥廷,“以化學汽相沉積法在(100)鋁酸鋰基板上成長氧化鋅奈米材料”,國立中山大學材料科學研究所碩士論文(2012)。
52. X. L. Wu, G. G. Siu, C. L. Fu, H. C. Ong, Appl. Phys. Lett. 78 (2001) 2285.
53. Aurangzed Khan, J. Pak. Mater. Soc. 4 (2010) 5.
54. 王太伸,”以光調制光譜、光激發螢光光譜、拉曼光譜、穿透光譜、反射光譜研究 GaAsSb/GaAs、ZnO、AlGaN/GaN、Oxide-GaAs材料的光學特性”,國立成功大學物理研究所博士論文(2008)。
55. Hyo-Won Suh, Gil-Young Kim, Yeon-Sik Jung, and Won-Kook Choi, J. Appl. Phys. 97 (2005) 044305.
56. Khun A. Alim, Vladimir A. Fonoberov, Manu Shamsa, and Alexander A. Balandin, J. Appl. Phys. 97 (2005) 124313.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code