Responsive image
博碩士論文 etd-0527114-090958 詳細資訊
Title page for etd-0527114-090958
論文名稱
Title
以化學汽相沉積法在(010)鎵酸鋰基板上成長氧化鋅奈米材料
Growth of Zinc Oxide Nano-materials on (010)-LiGaO2 Substrate by Chemical Vapor Deposition
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
59
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-25
繳交日期
Date of Submission
2014-06-27
關鍵字
Keywords
奈米帶、化學汽相沉積法、鎵酸鋰、氧化鋅
Zinc Oxide, LiGaO2, nano-belts, Chemical vapor deposition
統計
Statistics
本論文已被瀏覽 5645 次,被下載 67
The thesis/dissertation has been browsed 5645 times, has been downloaded 67 times.
中文摘要
本論文研究使用化學汽相沉積法 (Chemical Vapor Deposition,CVD)於鎵酸鋰(LiGaO2,LGO) 基板上成長非極性氧化鋅奈米帶。本實驗使用氬氣及氧氣作為載送氣體及氣態反應源,以氧化鋅及石墨按比例均勻混合後作為反應源前驅物,且在實驗前先將基板鍍金作為催化物進行氧化鋅生長。實驗研究以鍍金的厚度、溫度、壓力、反應的時間等實驗條件,研究氧化鋅奈米材料生長之影響。
以掃描式電子顯微鏡(Scanning Electron Microscopy,SEM) 、 X光繞射儀(X-Ray Diffraction,XRD)、穿透式電子顯微鏡(Transmission Electron Microscopy, TEM),分析及探討其表面形貌、晶體結構、生長機制,且再進一步以光致發光(Photoluminescence spectrum , PL)、陰極發光(Cathodoluminescence spectrum,CL)及拉曼(Raman)光譜了解其氧化鋅奈米材料的光學性質,以及材料應力等研究。
研究奈米材料的晶體結構及表面型態,我們發現在鍍金厚度為0.3 nm,溫度930 ℃,反應時間為10分鐘與氬氣與氧氣混合氣流量為50 sccm時,可獲得生長品質良好a-plane及m-plane的氧化鋅奈米帶狀,且由TEM結果可確定其生長機制為Vapor-liquid-solid, VLS加Vapor -solid, VS的生長模式。
Abstract
In this thesis,growth of zinc oxide (ZnO) nano-belts on (010)–LiGaO2 (LGO) substrates by a chemical vapor deposition (CVD) process. Argon and oxygen are used as the carrier gas and reaction gas. The mixture powders of ZnO and graphite are used as the reaction sources. Au-film on the LGO substrate is catalyst for growth zinc oxide nano-belts. Used to study the influence of the varied growth conditions, such as deposition time, reaction pressure, growth temperature, and other experimental conditions to study the growth of ZnO nano-belts impact.
The surface morphology and crystal structure were analyzed using Scanning electron microscope (Scanning Electron Microscopy, SEM). Crystal quality of ZnO was investigated by X-ray diffraction (XRD). The growth mechanism were analyzed using transmission electron microscope (TEM). Furthermore, photoluminescence (PL), cathodoluminescence (CL) and Raman spectroscope (Raman) were used to study optical properties and the inner stress of the materials.
The a-plane and m-plane ZnO nano-belts can be obtained at the growth parameters of 930°C, 30 torr, 5 minutes, and 50 sccm of Ar/O2, 0.3 mm of Au. And the growth mechanism for ZnO nano-belts is Vapor-liquid-solid (VLS) and Vapor-solid( VS) growth mode.
目次 Table of Contents
目錄
論文審定書.............................................................................................................. i
致謝....................................................................................................................... ii
摘要....................................................................................................................... iii
Abstract................................................................................................................. iv
目錄........................................................................................................................ v
圖目錄................................................................................................................... vii
表目錄.................................................................................................................. viii
第一章 緒論...................................................................................................... 1
1-1 引言 ................................................................................................................ 1
1-2 研究動機.......................................................................................................... 1
第二章 理論基礎文獻回顧.................................................................................. 3
2-1 氧化鋅之結構與基本性質 .................................................................................. 3
2-2 鎵酸鋰之結構與性質.......................................................................................... 6
2-3 化學氣相沉積法.................................................................................................7
2-4 Vapor-Liquid-Solid(VLS) 成長機制法.................................................................. 10
第三章 實驗內容 ................................................................................................. 13
3-1 實驗流程 ....................................................................................................... 14
3-2 實驗裝置 ....................................................................................................... 15
3-3 實驗方法與步驟 ............................................................................................. 16
3-4 量測設備簡介 ................................................................................................ 18
第四章 實驗結果 ............................................................................................. 20
4-1 基板鍍金厚度氧化鋅奈米材料的影響................................................................. 20
4-2 成長溫度對氧化鋅奈米材料的影響. ................................................................... 23
4-3 氧氣流量對氧化鋅奈米材料的影響………………….............................................. 26
4-4 反應時間對氧化鋅奈米材料的影響………………………....................................... 29
4-5 XRD結果分析. ................................................................................................ 31
4-6 穿透式電子顯微鏡TEM觀察與分析.................................................................... 32
4-7 光激發光譜PL (Photoluminescence spectrum)結果分析.......................................42
4-8 陰極發光光譜CL (Cathodoluminescence spectrum)結果分析................................43
4-9 拉曼光譜(Raman spectrum, Raman) 結果分析........... ........................................44

第五章 結論………………………………................................................................ 45
第六章 參考文獻 ................................................................................................46
參考文獻 References
1. 張致瑋,國立中山大學材料科學研究所碩士論文(2013)
2. 蘭彥廷,國立中山大學材料科學研究所碩士論文(2011)
3. Ü. Özgür, Ya.I. Alivov, C. Liu, A. Teke, M.A. Resschikov, S. Doğan, V. Avrutin, S.J. Cho, and H. Morkoc, J. Appl. Phys., 98 (2005) 041301.
4. Pearson’s Handbook of Crystallographic Data, 4795.
5. F. Claeyssens, C.L. Freeman, N.L. Allan, Y. Sun, M.N.R. Ashfold, and J.H. Harding, J. Mater. Chem., 15 (2005) 139.
6. X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, X. W. Fan, X. G. Kong, J. Lumin., 99 (2002) 149.
7. T. Tatsumi, M. Fujita, N. Kawamoto, M. Sasajima, Y. Horikoshi, J.Appl.Phys., 43 (2004) 2602.
8. D. P. Norton, Y. W. Heo, M.P. Ivill, K. Ip, S.J. Pearton, M.F. Chisholm, and T. Steiner, Mater. Today, 7 (2004) 34.
9. M. Marezio, Acta Crystallogr., 18 (1965) 481.
10. J. P. Remeika, A.A. Ballman, Appl. Phys. Lett., 5 (1964) 180.
11. T. Ishii, Y. Tazoh, S. Miyazawa, J. Cryst. Growth, 189-190 (1998) 208-212.
12. S. Nanamatsu, K. Doi, M. Takahashi, J. Appl. Phys., 11 (1972) 816.
13. H.O. Pierson, “Handbook of Chemical Vapor Deposition”, Second Edition, (1999) pp. 12-31.
14. R.S. Wagner and W.C. Ellis, Appl. Phys. Lett., 4 (1964) 89.
15. Y. Wu and P. Yang, J. Am. Chem. Soc., 123(13) (2001) 3165.
16. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H.J. Choi, Adv. Funct. Mater., 12 (2002) 323.
17. M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, Advanced Materials, 13 (2001) 113.S. Huang, Q. Cai, J. Chen, Y. Qian, and L. Zhang, J. Am. Chem. Soc., 131(6) (2009) 2094.
18. S.H. Oh, M.F. Chisholm, Y. Kauffmann, W.D. Kaplan, W. Luo, M. Rühle, and C. Scheu, Science, 330 (2010) 489.
19. H. Li, Y. Huang, Y. Zhang, J. Qi, X. Yan, Qi Zhang, and J. Wang, Cryst. Growth Des., 9(4) (2009) 1863.
20. H. Morkoc and Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology, (Wiley-VCH, 2009).
21. J.V. Wittemann, W. Münchgesang, S. Senz, and V. Schmidt, J. Appl. Phys., 107 (2010) 096105.
22. C.Y. Wen, M.C. Reuter, J. Tersoff, E. A. Stach, and F. M. Ross, Nano Lett., 10(2) (2010) 514.
23. J. Sengupta and C. Jacob, J. Nanopart. Res., 12 (2010) 457.
24. P. Kumari, S.S. Roy, and J. McLaughlin, J. Nanosci. Nanotechnol., 9(7) (2009) 4367.
25. S.H. Oh, M.F. Chisholm, Y. Kauffmann, W.D. Kaplan, W. Luo, M. Rühle, and C. Scheu, Science, 330 (2010) 489.
26. Y. Wu and P. Yang, J. Am. Chem. Soc., 123(13) (2001) 3165.
27. Y.K. Rao, Stoichiometry and Thermodynamics of Metallurgical Process, Cambridge University Press, New York, (1985).
28. Y. Wei, Y. Ding, C. Li, S. Xu,; J.H. Ryo, R. Dupuis, A.K. Sood, D.L. Polla, and Z.L. Wang, J. Phys. Chem. C, 112 (2008) 18935.
29. H. Tang, Y. Ding, P. Jiang, H. Zhou, C.F. Guo, L. Sun, A. Yu, and Z.L. Wang, Cryst. Eng. Comm., 13 ( 2011) 5052.
30. Z. W. Pan, Z. R. Dai, Z. L. Wang, Science 291, 1947 (2001).
31. J.Y. Lao, J.Y. Huang, D.Z. Wang, and Z.F. Ren, Nano Lett. , 3 (2003) 235.
32. P.X. Gao, Y. Ding, W. Mai, W.L. Hughes, C. Lao, and Z.L. Wang, Science, 309 (2005) 1700.
33. PCPDFWIN, ver. 1.30 (JCPDS-International Centre for Diffraction Data, 1997).
34. S.H. Oh, M.F. Chisholm, Y. Kauffmann, W.D. Kaplan, W. Luo, M. Rühle, and C. Scheu, Science, 330 (2010) 489.
35. T.C. Damen, S.P.S. Proto, and B. Tell, Phys. Rev., 142 (1966) 570.
36. Kong, X. Y.; Ding, Y.; Yang, R. S.; Wang, Z. L. Science 2004, 303, 1348
37. Xi, Y.; Song, J.; Xu, S.; Yang, R.; Gao, Z.; Hu, C.; Wang, Z. L. J. Mater. Chem. 2009, 19, 9260.
38. T.Huanga, S.houa, H.Tenga, H.ina, J.Wanga, P.Hanc, R.Zhangc,J.Crystal Growth 310(2008)
39. T.C. Damen, S.P.S. Proto, and B. Tell, Phys. Rev., 142 (1966) 570.
40. K.A. Alim, V.A. Fonoberov, and A.A. Balandin, Appl. Phys. Lett., 86 (2005) 053103.
41. F. Decremps, J. Pellicer-Porres, A.M. Saitta, J.C. Chervin, and A. Polian, Phys. Rev. B, 65 (2002) 092101.
42..N.Fujimura, T.Nishihara, S.i Goto, . Xu and T. lto,J. Crystal Growth130(1993)269
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code