Responsive image
博碩士論文 etd-0527116-155259 詳細資訊
Title page for etd-0527116-155259
論文名稱
Title
拓樸絕緣體之飽和吸收與聲子超快動力學研究
Saturable Absorption and Ultrafast Carrier Dynamics Study of Topological Insulators
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
126
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-14
繳交日期
Date of Submission
2016-07-05
關鍵字
Keywords
硒化鉍、拓樸絕緣體、同調光頻聲子、銻化鉍、激發-探測技術、塊材態、飽和吸收、表面態
Topological insulators, Bi2Se3, Coherent phonon, Bi2Te3, Pump-probe technique, Saturable absorption, Surface state, Bulk state
統計
Statistics
本論文已被瀏覽 5652 次,被下載 55
The thesis/dissertation has been browsed 5652 times, has been downloaded 55 times.
中文摘要
拓樸絕緣體因其特殊的能帶結構及反常的物理特性,不論在物理模型的預測、材料的製備或者是材料基本特性的研究,皆引起廣大的研究熱潮。鉍系(Bi2Te3, Bi2Se3)拓樸絕緣體因其發現的時間較早更廣為利用於熱電材料上,製程技術上較為成熟,但在數奈米薄膜下的材料特性及載子傳輸過程仍有許多未知的問題有待研究。
本篇論文中,我們利用新穎的激發-探測光譜系統來探討拓樸絕緣體載子動力學及聲子傳遞的過程。首先,我們利用極低的激發光能量強度來觀察銻化鉍(Bi2Te3)薄膜從未飽和至飽和情況下的載子動力學。表面態與塊材態彼此之間的競爭行為被用來清楚地解釋材料越薄下,塊材態會逐漸主導整個動力學行為。另一方面,我們架設一套新型反射式的激發-探測光譜系統,量測硒化鉍(Bi2Se3)非激發面聲子的傳遞過程。同調光頻聲子的訊號被清楚地觀察到,證實了先前以一般反射式激發-探測光譜及理論模擬所得到的結果,也顯示了聲子於薄膜下傳遞的特性。此外,聲子的生命週期及鬆弛時間隨厚度的變化也被分析及討論。
Abstract
In this thesis, carrier dynamics and phonon propagation of topological insulators are investigated using novel pump-probe technique. First, the evolution of carrier dynamics of Bi2Te3 thin films from unsaturated to saturated condition was characterized by extremely low excitation condition. The competition between surface state and bulk state was proposed to interpret the clear trend of which the bulk state will dominate the behavior as decreasing film thickness.
Regarding to the phonon propagation of topological insulator Bi2Se3 thin films, a new type of reflective pump probe which the pump and probe beam excite the film on the opposite side was buildup. The result of clear coherent phonon behavior further confirm the conclusion from typical reflective pump probe measurement. Additionally, the result indicated the nature of phonon propagation. Furthermore, thickness dependent of phonon life time and relaxation time are also discussed.
目次 Table of Contents
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 論文架構 3
第二章 超快雷射激發-探測光譜系統理論與拓樸絕緣體簡介 4
2.1 超快雷射激發-探測光譜系統介紹 6
2.1.1 超快雷射激發-探測光譜系統原理 7
2.1.2 超快激發-探測光譜系統架構介紹 11
2.2 系統解析度與脈衝寬度 13
2.2.1 自相關系統 15
2.2.2 系統解析度分析 21
2.3 拓樸絕緣體簡介 22
2.3.1 拓樸絕緣體之概述 22
2.3.2 拓樸絕緣體之能帶結構 24
2.3.3 三維拓樸絕緣體—硒化鉍與銻化鉍之節及能帶結構 28
2.3.4 拓譜絕緣體的應用 31

第三章 拓樸絕緣體薄膜在超低激發情況下之超快載子動力學研究 32
3.1 實驗樣品條件與參數 34
3.2 激發-探測光譜之文獻分析與研究動機 35
3.3 拓樸絕緣體的非線性飽和吸收機制 39
3.3.1 非線性飽和吸收特性及實驗架構 39
3.3.2 刀口法及雷射能量強度分析 41
3.3.3 銻化鉍(Bi2Te3)薄膜非線性飽和吸收強度分析 44
3.4 超低激發時間解析反射式激發-探測光譜系統 47
3.5 實驗結果與分析 51
3.6 結論 59
第四章 拓樸絕緣體硒化鉍(Bi2Se3)薄膜聲子的單方向傳播及其超快載子動力學研究 60
4.1 拓樸絕緣體薄膜之聲子震盪行為 62
4.2 實驗數據回顧 66
4.2.1 硒化鉍(Bi2Se3)薄膜的反射式激發-探測光譜(OPOPR)實驗數據 67
4.2.2 硒化鉍(Bi2Se3)薄膜的穿透式激發-探測光譜(OPOPT)實驗數據 70
4.2.3 OPOPR及OPOPT實驗數據總結與分析 75
4.3 拓樸絕緣體薄膜之聲子震盪單方向傳播模擬 77
4.4 新型反向探測時間解析反射式激發-探測光譜系統 81
4.5 實驗樣品條件與參數 85
4.6 實驗結果與分析 87
4.6.1 反向探測激發-探測光譜(BOPOPR)的瞬時反射率變化光譜分析 87
4.6.2 硒化鉍薄膜內部載子特性分析 94
4.7 結論 97
第五章 結論與未來展望 98
5.1 結論 98
5.2 未來展望 99
參考文獻 100
參考文獻 References
[1]Moore, J. E. (2010). The birth of topological insulators. Nature, 464(7286), 194-198.
[2]König, M., Wiedmann, S., Brüne, C., Roth, A., Buhmann, H., Molenkamp, L. W., ... & Zhang, S. C. (2007). Quantum spin Hall insulator state in HgTe quantum wells. Science, 318(5851), 766-770.
[3] Xia, Y., Qian, D., Hsieh, D., Wray, L., Pal, A., Lin, H., & Hasan, M. Z. (2009). Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature Physics, 5(6), 398-402.
[4] Herskind, P. F., Dantan, A., Marler, J. P., Albert, M., & Drewsen, M. (2009). Realization of collective strong coupling with ion Coulomb crystals in an optical cavity. Nature Physics, 5(7), 494-498.
[5] Wang, C., Zhu, X., Nilsson, L., Wen, J., Wang, G., Shan, X., ... & Xue, Q. (2013). In situ Raman spectroscopy of topological insulator Bi2Te3 films with varying thickness. Nano Research, 6(9), 688-692.
[6] Kim, Y. S., Brahlek, M., Bansal, N., Edrey, E., Kapilevich, G. A., Iida, K., ... & Oh, S. (2011). Thickness-dependent bulk properties and weak antilocalization effect in topological insulator Bi2Se3. Physical Review B, 84(7), 073109.
[7] Wang, Y., Guo, L., Xu, X., Pierce, J., & Venkatasubramanian, R. (2013). Origin of coherent phonons in Bi2Te3 excited by ultrafast laser pulses. Physical Review B, 88(6), 064307.
[8] Qi, J., Chen, X., Yu, W., Cadden-Zimansky, P., Smirnov, D., Tolk, N. H., ... & Qiao, S. (2010). Ultrafast carrier and phonon dynamics in Bi2Se3 crystals. Applied Physics Letters, 97(18), 182102.
[9] Kumar, N., Ruzicka, B. A., Butch, N. P., Syers, P., Kirshenbaum, K., Paglione, J., & Zhao, H. (2011). Spatially resolved femtosecond pump-probe study of topological insulator Bi 2 Se 3. Physical Review B, 83(23), 235306.
[10] Wu, A. Q., Xu, X., & Venkatasubramanian, R. (2008). Ultrafast dynamics of photoexcited coherent phonon in Bi2Te3 thin films. Applied Physics Letters,92(1), 11108-11108.
[11] Zhang, H., Liu, C. X., Qi, X. L., Dai, X., Fang, Z., & Zhang, S. C. (2009). Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature physics, 5(6), 438-442.
[12]陳至傑“四元拓樸絕緣體Bi2-xSbxTe2Se之熱電傳輸性質研究” 國立東華大學物理學系 碩士論文,2014年。
[13]陳奎穎“藉由時空間的選擇性激發達到單方向傳播的聲子研究” 國立中山大學光電工程學系 碩士論文,2015年12月。
[14] McIver, J. W., Hsieh, D., Steinberg, H., Jarillo-Herrero, P., & Gedik, N. (2012). Control over topological insulator photocurrents with light polarization. Nature nanotechnology, 7(2), 96-100.
[15]科學月刊“超短脈衝雷射改變世界”2015年5月號(545期)-光科學年代
[16] Xu, J. L., Sun, Y. J., He, J. L., Wang, Y., Zhu, Z. J., You, Z. Y., ... & Tu, C. Y. (2015). Ultrasensitive nonlinear absorption response of large-size topological insulator and application in low-threshold bulk pulsed lasers. Scientific reports,5.
[17] Zhao, C., Zhang, H., Qi, X., Chen, Y., Wang, Z., Wen, S., & Tang, D. (2012). Ultra-short pulse generation by a topological insulator based saturable absorber. Applied Physics Letters, 101(21), 211106.
[18] Lu, S., Zhao, C., Zou, Y., Chen, S., Chen, Y., Li, Y., ... & Tang, D. (2013). Third order nonlinear optical property of Bi 2 Se 3. Optics express, 21(2), 2072-2082.
[19] Zhang, J., Peng, Z., Soni, A., Zhao, Y., Xiong, Y., Peng, B., ... & Xiong, Q. (2011). Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3 nanoplatelets. Nano letters, 11(6), 2407-2414.
[20] Luo, C. W., Wang, H. J., Ku, S. A., Chen, H. J., Yeh, T. T., Lin, J. Y., ... & Cheng, C. M. (2013). Snapshots of Dirac fermions near the Dirac point in topological insulators. Nano letters, 13(12), 5797-5802.
[21] Hajlaoui, M., Papalazarou, E., Mauchain, J., Jiang, Z., Miotkowski, I., Chen, Y. P., ... & Marsi, M. (2013). Time resolved ultrafast ARPES for the study of topological insulators: The case of Bi2Te3. The European Physical Journal Special Topics, 222(5), 1271-1275.
[22] Hajlaoui, M., Papalazarou, E., Mauchain, J., Lantz, G., Moisan, N., Boschetto, D., ... & Perfetti, L. (2012). Ultrafast surface carrier dynamics in the topological insulator Bi2Te3. Nano letters, 12(7), 3532-3536.
[23] Wang, Y., Guo, L., Xu, X., Pierce, J., & Venkatasubramanian, R. (2013). Origin of coherent phonons in Bi2Te3 excited by ultrafast laser pulses. Physical Review B, 88(6), 064307.
[24] 黃則維“分子束磊晶成長鉍系(Bi2Se3, Bi2Te3)拓樸絕緣體之超快動力學研究 ”國立中山大學光電工程學系 碩士論文 2014年6月。
[25] Muybridge, Eadweard; Mozley, Anita Ventura (foreword) (1887). Muybridge's Complete Human and Animal Locomotion: All 781 Plates from the 1887 Animal Locomotion.CourierDoverPublications.p. xvii. ISBN 978-0-486-23792-3.Retrieved 15 June 2012.
[26] 羅志偉 “以極化飛秒光譜研究釔鋇銅氧化物之各向異性超快動力學” 國立交通大學電子物理系,2003年10月。
[27]洪勝富、齊正中“時間解析激發探測技術”,物理雙月刊,二十卷五期,1998年10月。
[28] K. Sakai and M. Tani “Terahertz Optoelectronics” Berlin : Springer, 2005.
[29] Theodore Maiman Hughes Research Laboratories, Malibu, California
[30] Douglas, Martin (May 11, 2007). Theodore Maiman, 79, Dies; Demonstrated First LASER
[31] Sun, Z., Hasan, T., Torrisi, F., Popa, D., Privitera, G., Wang, F., ... & Ferrari, A. C. (2010). Graphene mode-locked ultrafast laser. ACS nano, 4(2), 803-810.
[32] Tang, P., Zhang, X., Zhao, C., Wang, Y., Zhang, H., Shen, D., ... & Fan, D. (2013). Topological insulator: saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er: YAG ceramic laser. Photonics Journal, IEEE, 5(2), 1500707-1500707.
[33] Li, P., Zhang, G., Zhang, H., Zhao, C., Chi, J., Zhao, Z., ... & Yao, Y. (2014). -Switched Mode-Locked Nd: YVO 4 Laser by Topological Insulator Bi 2 Te 3 Saturable Absorber. Photonics Technology Letters, IEEE, 26(19), 1912-1915.
[34] Hu, M., Liu, J., Tian, J., Dou, Z., & Song, Y. (2014). Generation of Q-switched pulse by Bi2Se3 topological insulator in Yb: KGW laser. Laser Physics Letters,11(11), 115806.
[35] Xu, B., Wang, Y., Peng, J., Luo, Z., Xu, H., Cai, Z., & Weng, J. (2015). Topological insulator Bi 2 Se 3 based Q-switched Nd: LiYF 4 nanosecond laser at 1313 nm. Optics express, 23(6), 7674-7680.
[36] Sun, Y. J., Lee, C. K., Xu, J. L., Zhu, Z. J., Wang, Y. Q., Gao, S. F., ... & Tu, C. Y. (2015). Passively Q-switched tri-wavelength Yb 3+: GdAl 3 (BO 3) 4 solid-state laser with topological insulator Bi 2 Te 3 as saturable absorber.Photonics Research, 3(3), A97-A101.
[37]丁濟民 “近場之雙光子吸收光致電流對二極體元件之量測” 國立交通大學光電工程研究所 碩士論文,1996年6月。
[38] Rick Trebino “Measuring Ultrashort Laser Pulses” School of Physics Georgia Institute of Technology
[39]von Klitzing, K, (1986). The quantized Hall effect. Reviews of modern Physics, 58(3),519
[40] G. H. Zhang, H. J. Qin, J. Teng, J. D. Guo, Q. L. Guo, X Dai, Z. Fang and K. H. Wu, “Quintuple-layer epitaxy of thin films of topological insulator Bi2 Se3”, Appl. Phys. Lett. 95, 053114 (2009).
[41] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. A., ... & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. science, 306(5696), 666-669.
[42] Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., & Geim, A. K. (2005). Two-dimensional atomic crystals.Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10451-10453
[43] Novoselov, K. S. A., Geim, A. K., Morozov, S., Jiang, D., Katsnelson, M., Grigorieva, I., ... & Firsov, A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. nature, 438(7065), 197-200
[44] Fu, L., Kane, C. L., & Mele, E. J. (2007). Topological insulators in three dimensions. Physical Review Letters, 98(10), 106803
[45] Chen, Y. L., Chu, J. H., Analytis, J. G., Liu, Z. K., Igarashi, K., Kuo, H. H., ... & Hashimoto, M. (2010). Massive Dirac fermion on the surface of a magnetically doped topological insulator. Science, 329(5992), 659-662.
[46] Sobota, J. A., Yang, S., Analytis, J. G., Chen, Y. L., Fisher, I. R., Kirchmann, P. S., & Shen, Z. X. (2012). Ultrafast optical excitation of a persistent surface-state population in the topological insulator Bi2Se3. Physical review letters,108(11), 117403.
[47] Neto, A. C., Guinea, F., Peres, N. M. R., Novoselov, K. S., & Geim, A. K. (2009). The electronic properties of graphene. Reviews of modern physics,81(1), 109.
[48] Hsieh, D., Xia, Y., Wray, L., Qian, D., Pal, A., Dil, J. H., ... & Hor, Y. S. (2009). Observation of unconventional quantum spin textures in topological insulators.Science, 323(5916), 919-922.
[49] Klitzing, K. V., Dorda, G., & Pepper, M. (1980). New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance.Physical Review Letters, 45(6), 494.
[50] Murakami, S., Nagaosa, N., & Zhang, S. C. (2004). Spin-hall insulator.Physical review letters, 93(15), 156804.
[51] Kane, C. L., & Mele, E. J. (2005). Z2 topological order and the quantum spin Hall effect. Physical review letters, 95(14), 146802.
[52] Moore, J. E., & Balents, L. (2007). Topological invariants of time-reversal-invariant band structures. Physical Review B, 75(12), 121306.
[53] Maassen, J., & Lundstrom, M. (2013). A computational study of the thermoelectric performance of ultrathin Bi2Te3 films. Applied Physics Letters,102(9), 093103.
[54] Qi, X. L., & Zhang, S. C. (2011). Topological insulators and superconductors. Reviews of Modern Physics, 83(4), 1057.
[55] Chen, Y. L., Analytis, J. G., Chu, J. H., Liu, Z. K., Mo, S. K., Qi, X. L., ... & Zhang, S. C. (2009). Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science, 325(5937), 178-181.
[56] Hajlaoui, M., Papalazarou, E., Mauchain, J., Lantz, G., Moisan, N., Boschetto, D., ... & Perfetti, L. (2012). Ultrafast surface carrier dynamics in the topological insulator Bi2Te3. Nano letters, 12(7), 3532-3536.
[57] Wang, C., Zhu, X., Nilsson, L., Wen, J., Wang, G., Shan, X., ... & Xue, Q. (2013). In situ Raman spectroscopy of topological insulator Bi2Te3 films with varying thickness. Nano Research, 6(9), 688-692.
[58] Zhao, C., Zou, Y., Chen, Y., Wang, Z., Lu, S., Zhang, H., ... & Tang, D. (2012). Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi 2 Se 3 as a mode locker. Optics express, 20(25), 27888-27895.
[59] Luo, Z. C., Liu, M., Liu, H., Zheng, X. W., Luo, A. P., Zhao, C. J., ... & Xu, W. C. (2013). 2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber. Optics letters, 38(24), 5212-5215.
[60] Luo, Z., Huang, Y., Weng, J., Cheng, H., Lin, Z., Xu, B., ... & Xu, H. (2013). 1.06 μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi 2 Se 3 as a saturable absorber. Optics express, 21(24), 29516-29522.
[61] 周哲民 “碲化鉍拓樸絕緣體做為飽和吸收體的固態脈衝雷射研製” 國立中山大學光電工程學系 碩士論文 2015年7月。
[62] Lu, S., Zhao, C., Zou, Y., Chen, S., Chen, Y., Li, Y., ... & Tang, D. (2013). Third order nonlinear optical property of Bi 2 Se 3. Optics express, 21(2), 2072-2082.
[63] Lai, Y. P., Chen, H. J., Wu, K. H., & Liu, J. M. (2014). Temperature-dependent carrier–phonon coupling in topological insulator Bi2Se3. Applied Physics Letters, 105(23), 232110.
[64] Cheng, L., Tang, C. S., Nair, S. K., Xia, B., Wang, L., Zhu, J. X., & Chia, E. E. (2014). Temperature-dependent ultrafast carrier and phonon dynamics of topological insulator Bi1. 5Sb0. 5Te1. 8Se1. 2. Applied Physics Letters,104(21), 211906.
[65] Li, S., Huang, H., Zhu, W., Wang, W., Chen, K., Yao, D. X., ... & Gan, F. (2011). Femtosecond laser-induced crystallization of amorphous Sb2Te3 film and coherent phonon spectroscopy characterization and optical injection of electron spins. Journal of Applied Physics, 110(5), 053523.
[66] Kumar, N., Ruzicka, B. A., Butch, N. P., Syers, P., Kirshenbaum, K., Paglione, J., & Zhao, H. (2011). Spatially resolved femtosecond pump-probe study of topological insulator Bi 2 Se 3. Physical Review B, 83(23), 235306.
[67] Graf, S., Sigg, H., Köhler, K., & Bächtold, W. (2000). Photon drag investigations of current relaxation processes in a two-dimensional electron gas. Physical Review B, 62(15), 10301.
[68] Glinka, Y. D., Babakiray, S., Johnson, T. A., Bristow, A. D., Holcomb, M. B., & Lederman, D. (2013). Ultrafast carrier dynamics in thin-films of the topological insulator Bi2Se3. Applied Physics Letters, 103(15), 151903.
[69]曾國陞 “以飛秒光激發探測系統研究硒化鉍薄膜之超快動力學” 國立交通大學電子物理系 碩士論文,2012年7月。
[70] Thomsen, C., Grahn, H. T., Maris, H. J., & Tauc, J. (1986). Surface generation and detection of phonons by picosecond light pulses. Physical Review B,34(6), 4129.
[71] Manevitch, L. I., & Vakakis, A. F. (2014). Nonlinear oscillatory acoustic vacuum. SIAM Journal on Applied Mathematics, 74(6), 1742-1762.
[72] Alex Mathew, University of Rochester“Lattice Vibrations – Phonons in Solid State”
[73] Langville, A. N., & Stewart, W. J. (2004). The Kronecker product and stochastic automata networks. Journal of computational and applied mathematics, 167(2), 429-447.
[74] Regalia, P. A., & Sanjit, M. K. (1989). Kronecker products, unitary matrices and signal processing applications. SIAM review, 31(4), 586-613.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code