Responsive image
博碩士論文 etd-0527117-230318 詳細資訊
Title page for etd-0527117-230318
論文名稱
Title
整合電壓/虛功控制之降壓節能應用
Integrated Volt/Var Controls for Implementing Conservation Voltage Reduction
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
192
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-06-07
繳交日期
Date of Submission
2017-06-27
關鍵字
Keywords
降壓節能、配電自動化系統、整合電壓/虛功控制、先進電表基礎建設、資料收集及監控系統
supervisory control and data acquisition, distribution automation, advanced metering infrastructure, integrated volt/var control, Conservation voltage reduction
統計
Statistics
本論文已被瀏覽 5737 次,被下載 739
The thesis/dissertation has been browsed 5737 times, has been downloaded 739 times.
中文摘要
降壓節能(Conservation voltage reduction, CVR)的研究已有數十年歷史,也被很多的電力業者包含台灣電力公司所採用,以解決短期電力運轉問題及節省能源的消耗。為確保配電線路降壓節能運轉的有效性,用戶端設備的負載特性及配電變壓器負載受電壓變動時的影響,需深入探討,以確保資料分析的正確性。由於配電自動化系統(Distribution Automation, DA)、資料收集及監控系統(Supervisory Control and Data Acquisition, SCADA)以及先進電表基礎建設(Advanced Metering Infrastructure, AMI)的發展,使得精確的配電變壓器負載及饋線模型得以藉由擷取自這些系統的運轉資料而獲得。本論文利用配電饋線、變壓器的實、虛功電力量測值及AMI資料,研究配電變壓器負載受有載分接頭(on-load tap changer, OLTC)運轉之影響。本研究利用一個AMI及SCADA資料的處理程序,識別及驗證饋線節點負載及可能存在的變壓器連接相別錯誤。藉用有效的饋線及節點模型搭配配電線路狀態估計法以建立線上饋線運轉模型。利用近似即時配電線路模型,本論文提出整合電壓/虛功控制架構,包含OLTC、並聯電容器、饋線開關操作控制,以達成多饋線的降壓節能運轉,期望得到更高的節能效益並確保各個節點的電壓品質。
Abstract
Conservation voltage reduction (CVR) study has been conducted for decades and practiced by many utilities, including Taiwan Power Company, to deal with the short term operation problems and conduct energy conservation. To ensure effective distribution feeder level CVR operations, the load behaviors of equipment at the customer side and the distribution transformers under varying voltage situations have to be studied and validated. Due to the advancement of Distribution Automation (DA) system, Supervisory Control and Data Acquisition (SCADA) system and the Advanced Metering Infrastructure (AMI), accurate distribution transformer load and feeder models could be established by exploiting the data available from these system. In this dissertation, real and reactive power data measured at substation, distribution feeders and transformers are used to study the effects of on-load tap changer (OLTC) operations on the distribution transformers loading. A procedure that uses AMI and SCADA data is proposed to validate feeder node loads and detect possible database errors concerning the distribution transformers phase connections. Validated feeder and node load models are then used to perform distribution feeder state estimation to build the on-line feeder operation model. With the close to real-time distribution feeder models, an integrated voltage volt/var control scheme including OLTC, shunt capacitors and feeder tie switches operations, is proposed and demonstrated to achieve multi feeder level CVR operations that could lead to greater energy saving and ensure the voltage quality at each load point.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.2.1電力產業新科技 2
1.2.1.1 智慧型電網 2
1.2.1.2 自動讀表基礎建設 4
1.2.1.3 配電自動化 10
1.2.1.4 配電管理系統 13
1.2.2 降壓節能 15
1.2.2.1 降壓節能的定義 16
1.2.2.2 降壓節能與負載模型 18
1.2.2.3 降壓節能效益評估 22
1.2.2.4 降壓節能的策略運用 30
1.2.2.5 電容器對降壓節能的影響 34
1.2.2.6 降壓節能運轉的關鍵因素 34
1.2.3 負載模型 35
1.2.3.1靜態負載模型 35
1.2.3.2動態負載模型 36
1.2.3.3多項式負載模型 38
1.2.3.4 負載模型對降壓節能之影響 38
1.3 研究目的及論文架構 43
1.4 本論文貢獻 45
第二章 以配電系統狀態估計為基礎之配電系統及負載模型建立 46
2.1 負載模型建立 46
2.1.1 用戶負載行為 46
2.1.2 廻歸法建立ZIP負載模型 47
2.1.3 ZIP負載模型模擬 49
2.2 配電饋線運轉模型建立 50
2.2.1 配電系統模型 52
2.2.2 系統之線路參數模擬 54
2.2.3 系統之負載量測參數模擬 56
2.2.4 系統之負載ZIP參數模擬 61
2.3 配電系統負載模型實測案例驗證 63
2.3.1 用戶端電壓/負載曲線 64
2.3.2 利用實測資料建立之負載模型範例 68
2.4 配電系統狀態估計 71
2.4.1 三相配電系統狀態估計演算法 71
2.4.2 不良數據檢測及修正 75
2.5 配電變壓器不良數據檢測 77
2.5.1 變壓器相別錯誤識別 80
2.5.2 相別錯誤識別及修正演算法 82
2.5.3 相別錯誤識別及修正實例 86
2.6 討論 92
第三章 結合饋線重組及電壓控制之降壓節能 95
3.1 降壓節能演算法 95
3.2 OLTC之調控機制 101
3.3 粒子群演算法之饋線重組 101
3.4 結合饋線重組及電壓控制之降壓節能問題完整陳述 106
3.5 求解方法 109
3.6 討論 113
第四章 結合饋線重組及電壓控制之降壓節能系統模擬 118
4.1 模擬系統及案例說明 118
4.2 系統模擬 119
4.2.1 考慮配電變壓器重載(Level 1)之系統模擬 121
4.2.2 考慮配電饋線重載(Level 2)之系統模擬 127
4.2.3 考慮變電所主變重載(Level 3)之系統模擬 132
4.3 降壓節能效益分析比較 137
4.4 影響降壓節能運轉之不確定性因素 144
4.5 討論 147
第五章 結論與未來研究方向 149
參考文獻 152
附錄 159
A1常態負載之負載參數及模擬結果(模擬系統詳圖2-3) 159
A2配電變壓器重載之負載參數及模擬結果(模擬系統詳圖2-3) 160
A3饋線重載之負載參數及模擬結果(模擬系統詳圖2-3) 167
A4主變壓器重載之負載參數及模擬結果(模擬系統詳圖4-1) 175
參考文獻 References
[1] R. Preiss and V.Warnock, “Impact of voltage reduction on energy and demand”, IEEE Transaction on Power Apparatus and Systems, pp. 1665–1671, 1978.
[2] “智慧電網總體規劃方案”,經濟部能源局,2017年2月。
[3] 賴宏仁,“我國智慧電表相關技術發展現況”,資策會網路多媒體研究所,2010年9月,http://past.compotechasia.com/articleinfo.php?cid=37&id=16236
[4] 蒲冠志,“配電饋線設備監控與先進讀表系統測試場規劃與建置”,台灣電力公司綜合研究所,2011年6月,http://www.ncp.org.tw/vanilla/vj-attachment/2011/07/attach129.pdf
[5] National Energy Technology Laboratory (NETL), “Advanced metering infrastructure”, U.S. Department of Energy Office of Electricity Delivery and Energy Reliability, Feb. 2008.
[6] “Oracle Utilities Meter Data Management”, http://www.oracle.com/us/products/applications/utilities/customer-solutions/meter-data-management/overview/index.html
[7] “EnergyIP™ Meter Data Management System” ,http://www.energy.siemens.com/fi/pool/hq/services/power-transmission-distribution/metering-services/Energy-IP-Datasheet.pdf
[8] “Achieving high performance with smart meter data management systems”, http://www.accenture.com/Microsites/accenturesmartsolutions-meterdatamanagement/Documents/Accenture_POV_Smart_Grid_Meter_Data_Management_Systems.pdf
[9] “VEE Standard for the Ontario Smart Metering System”, Issue 3.0, Mar., 2010.
[10] “配電饋線自動化工程-配電技術手冊(二十五)”,台灣電力公司業務處,2009年12月。
[11] “Conservation Voltage Reduction and Volt VAR Optimization in the Smart Grid”, http://www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=000000000001024482, 2011.
[12] D. Kirshner, “Implementation of conservation voltage reduction at Commonwealth Edison”, IEEE Transaction on Power Systems, vol. 5, pp. 1178–1182, 1990.
[13] M. Begovic, D. Novosel, B. Milosevic, and M. Kostic, “Impact of distribution efficiency on generation and voltage stability”, 33rd Annual Hawaii Int. Conf. System Sciences, 2000.
[14] B. Williams, “Distribution capacitor automation provides integrated control of customer voltage levels and distribution reactive power flow”, IEEE Power Industry Computer Application Conf., pp. 215–220, 1995.
[15] D. Lauria, “Conservation voltage reduction (CVR) at Northeast utilities”, IEEE Transaction on Power Delivery, vol. 2, pp. 1186–1191, 1987.
[16] J. De Steese, “Assessment of Conservation Voltage Reduction Applicable in the BPA Service Region”, 1987.
[17] A. Dwyer, R. E. Nielsen, J. Stangl, and N. S.Markushevich, “Load to voltage dependency tests at BC hydro”, IEEE Transaction on Power Systems, vol. 10, pp. 709–715, 1995.
[18] T. A. Short and R.W. Mee, “Voltage reduction field trials on distributions circuits”, IEEE PES Transmission and Distribution Conf. Expo. (T&D), pp. 1–6, 2012.
[19] S. Lefebvre, G. Gaba, A.-O. Ba, and D. Asber, “Measuring the efficiency of voltage reduction at Hydro-Québec distribution”, IEEE Power and Energy Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Century, pp. 1–7, 2008.
[20] M. A. Peskin, P. W. Powell, and E. J. Hall, “Conservation voltage reduction with feedback from advanced metering infrastructure”, IEEE PES Transmission and Distribution Conf. Expo. (T&D), pp. 1–8, 2012.
[21] J. F. K. Schneider, F. Tuffner, and R. Singh, “Evaluation of Conservation Voltage Reduction (CVR) on a National Level”, 2010. http://www.pnl.gov/main/publications/external/technical reports/PNNL-19596.pdf.
[22] W. Ellens, A. Berry, and S. West, “A quantification of the energy savings by conservation voltage reduction”, IEEE Int. Conf. Power System Technology (POWERCON), pp. 1–6, 2012.
[23] E. Diskin, T. Fallon, G. O’mahony, and C. Power, “Conservation voltage reduction and voltage optimisation on Irish distribution networks”, CIRED 2012 Workshop Integration of Renewables into the Distribution Grid, pp. 1–4, 2012.
[24] EPRI, “PQ Commentary”, 2001. http://www.smartgridnews. com/artman/uploads/1/sgnr_2007_1208.pdf.
[25] R. W. Beck, “Distribution Efficiency Initiative Final Report”, 2007. http://neea.org/docs/default-source/rfp’s/longterm- monitoring-and-tracking-distribution-efficiency.pdf.
[26] T. L. Wilson, “Measurement and verification of distribution voltage optimization results”, IEEE Power and Energy Society General Meeting, pp. 1–9, 2010.
[27] E. N. W. Limited, “Customer Load Active System Services (CLASS)”, 2012. http://www.enwl.co.uk/class.

[28] ANSI, “ANSI Standard C84.1-1995 Electric Power Systems and Equipment Voltage Ratings (60 Hz)”, 1995.
[29] B. Kennedy and R. Fletcher, “Conservation voltage reduction (CVR) at Snohomish county PUD”, IEEE Transaction on Power Systems, vol. 6, pp. 986–998, 1991.
[30] Z. Y. Wang, and J. H. Wang. “Review on implementation and assessment of conservation voltage reduction”, IEEE Transactions on Power Systems 29.3, pp. 1306-315, 2014.
[31] V. Warnock and T. Kirkpatrick, “Impact of voltage reduction on energy and demand: Phase II”, IEEE Transaction on Power Systems, vol. 1, pp. 92–95, 1986.
[32] J. Erickson and S. Gilligan, “The effects of voltage reduction on distribution circuit loads”, IEEE Transaction on Power Apparatus and Systems, pp. 2014–2018, 1982.
[33] R. J. Smith and R. C. Dorf, “Circuits, Devices and Systems”, 2009. http://www.wiley.com.
[34] T. Wilson, “AdaptiVolta Based CVR in Industrial Applications Technical Synopsis”, 2003. http://utilidata.com/assets/ docs/white_papers/UtiliData_Technical_Synopsis_Industry_.pdf.
[35] Kevin P. Schneider, et al. “Evaluation of conservation voltage reduction (CVR) on a national level.” Pacific Northwest National Laboratory report, 2010.
[36] Bob Uluski, "VoltVAR Control and Optimization Concepts and Issues", EPRI.
[37] Greg. Shirek, “Evaluating Conservation Voltage Reduction with Windmil”, Milsoft Inc., 2011.
[38] T. J. Krupa and H. Asgeirsson, “The effects of reduced voltage on distribution circuit loads.” IEEE Transaction on Power Systems, vol. 2, pp. 1013–1018, 1987.
[39] K. Fagen and C. Bernier, “Efficiencies in distribution design and operating practices mid-study analysis,” IEEE Rural Electric Power Conf., pp. B6-B6-14, 2007.
[40] N. Markushevich, A. Berman, and R. Nielsen, “Methodologies for assessment of actual field results of distribution voltage and var optimization”, IEEE PES Transmission and Distribution Conf. Expo., pp. 1–5, 2012.
[41] B. J. Chen, M. W. Chang, “Load forecasting using support vector machines: A study on EUNITE competition 2001”, IEEE Transaction on Power Systems, vol. 19, pp. 1821–1830, 2004.
[42] S. Fan and L. Chen, “Short-term load forecasting based on an adaptive hybrid method”, IEEE Trans. Power Syst., vol. 21, pp. 392–401, 2006.
[43] H. S. Hippert, C. E. Pedreira, and R. C. Souza, “Neural networks for short-term load forecasting: A review and evaluation”, IEEE Trans. Power Syst., vol. 16, pp. 44–55, 2001.
[44] D. C. Park, M. El-Sharkawi, R. Marks, L. Atlas, and M. Damborg, “Electric load forecasting using an artificial neural network”, IEEE Transaction on Power Systems, vol. 6, pp. 442–449, 1991.
[45] M. Chen, R. Shoults, J. Fitzer, and H. Songster, “The effects of reduced voltages on the efficiency of electric loads”, IEEE Transactions on Power Apparatus and Systems, pp. 2158–2166, 1982.
[46] C. S. Chen, “The effect of voltage control to the efficiency and operation of electric distribution system”, Ph.D. dissertation, Univ. Texas at Arlington, Arlington, TX, USA, 1984.
[47] W. Price, S. Casper, C. Nwankpa, R. Bradish, H. Chiang, and C. Concordia et al., “Bibliography on load models for power flow and dynamic performance simulation”, IEEE Power Eng. Rev., vol. 15, pp. 70, 1995.
[48] J.De Steese, S.Merrick, and B.Kennedy, “Estimating methodology for a large regional application of conservation voltage reduction”, IEEE Transaction on Power Systems, vol. 5, pp. 862–870, 1990.
[49] J. G. De Steese, J. E. Englin, and R. D. Sands, “Conservation voltage reduction potential in the Pacific Northwest”, 25th Intersociety Energy Conversion Engineering Conf., 1990 (IECEC-90), pp. 43–47, 1990.
[50] R. C. Sonderegger, “Dynamic models of house heating based on equivalent thermal parameters”, Ph.D. dissertation, Center for Environmental Studies, Princeton Univ., Princeton, NJ, USA, 1978.
[51] K. P. Schneider, J. C. Fuller, and D. P. Chassin, “Multi-state load models for distribution system analysis”, IEEE Transaction on Power Systems, vol. 26, pp. 2425–2433, 2011
[52] C.-S. Chen, T.-H. Wu, C.-C. Lee, and Y.-M. Tzeng, “The application of load models of electric appliances to distribution system analysis”, IEEE Transaction on Power Systems, vol. 10, pp. 1376–1382, 1995.
[53] C. Alvarez, R. P. Malhame, and A. Gabaldón, “A class of models for load management application and evaluation revisited”, IEEE Transaction on Power Systems, vol. 7, pp. 1435–1443, 1992.
[54] W. Sunderman, “Conservation voltage reduction system modeling, measurement, and verification”, 2012 IEEE PES Transmission and Distribution Conf. Expo. (T&D), pp. 1–4, 2012.
[55] K. P. Schneider, J. C. Fuller, and D. Chassin, “Evaluating conservation voltage reduction: An application of GridLAB-D: An open source software package”, 2011 IEEE Power and Energy Society General Meeting, pp. 1–6, 2011.
[56] T. Wilson, “Energy conservation with voltage reduction-fact or fantasy”, 2002 IEEE Rural Electric Power Conf., pp. C3-C3_6, 2002.
[57] T. Wilson, K. Benson, D. Bell, et al., “Saving megawatts with voltage optimization”, 32nd Industrial Energy Technology Conf., New Orleans, LA, USA, 2010.
[58] R. H. Fletcher and A. Saeed et al., “Integrating engineering and economic analysis for conservation voltage reduction”, 2002 IEEE Power Engineering Society Summer Meeting, pp. 725–730, 2002.
[59] L. Du, L. He, and R. G. Harley, “A survey of methods for placing shunt capacitor banks in power network with harmonic distortion”, 38th Annual Conf. IEEE Industrial Electronics Society, pp. 1198–1203, 2012.
[60] B. Milosevic and M. Begovic, “Capacitor placement for conservative voltage reduction on distribution feeders”, IEEE Transaction on Power Delivery, vol. 19, pp. 1360–1367, 2004.
[61] M. J. Krok and S. Gene, “A coordinated optimization approach to Volt/VAr control for large power distribution networks”, Amer. Control Conf. (ACC), pp. 1145–1150, 2011.
[62] C. McCarthy and J. Josken, “Applying capacitors to maximize benefits of conservation voltage reduction”, Rural Electric Power Conf., pp. C4-1–C4-5, 2003.
[63] J. Triplett and S. Kufel, “Implementing CVR through voltage regulator LDC settings”, 2012 IEEE Rural Electric Power Conf. (REPC), pp. B2-1–B2-5, 2012.
[64] K. Fagen, “Distribution efficiency voltage optimization supports lowest cost new resource”, 2010 IEEE Power and Energy Society General Meeting, pp. 1–6, 2010.
[65] R. Uluski, “VVC in the smart grid era”, 2010 IEEE Power and Energy Society General Meeting, pp. 1–7, 2010.
[66] I. Roytelman, B. Wee, and R. Lugtu, “Volt/Var control algorithm for modern distribution management system”, IEEE Transaction on Power Systems, vol. 10, pp. 1454–1460, 1995.
[67] B. A. de Souza and A.M. F. de Almeida, “Multiobjective optimization and fuzzy logic applied to planning of the volt/var problem in distributions systems”, IEEE Transaction on Power Systems, vol. 25, pp. 1274–1281, 2010.
[68] T. Wilson and D. Bell, “Energy conservation and demand control using distribution automation technologies”, Rural Electric Power Conf., pp. C4-1-12 2004.
[69] R. C. Dugan and M. McGranaghan, “Sim city”, IEEE Power and Energy Mag., vol. 9, pp. 74–81, 2011.
[70] R. Neal, “The use of AMI meters and solar PV inverters in an advanced Volt/VAr control system on a distribution circuit”, 2010 IEEE PES Transmission and Distribution Conf. Expo., pp. 1–4, 2010.
[71] R. Belvin and T. Short, “Voltage reduction results on a 24-kV circuit”, 2012 IEEE PES Transmission and Distribution Conf. Expo., pp. 1–4, 2012.
[72] V. Dabic, C. Siew, J. Peralta, and D. Acebedo, “BC Hydro’s experience on Voltage VAR Optimization in distribution system”, 2010 IEEE PES Transmission and Distribution Conf. Expo., pp. 1–7, 2010.
[73] R. Singh, F. Tuffner, J. Fuller, and K. Schneider, “Effects of distributed energy resources on conservation voltage reduction (CVR)”, 2011 IEEE Power and Energy Society General Meeting, pp. 1–7, 2011.
[74] N. Markushevich and A. Berman, “New aspects of IVVO in active distribution networks”, 2012 IEEE PES Transmission and Distribution Conf. Expo., pp. 1–5, 2012.
[75] K. Nekooei, M. M. Farsangi, H. Nezamabadi-pour, and K. Y. Lee, “An improved multi-objective harmony search for optimal placement of DGs in distribution systems”, IEEE Transaction on Smart Grid, vol. 4, pp. 557–567, 2013.
[76] H. Hedayati, S. Nabaviniaki, and A. Akbarimajd, “A method for placement of DG units in distribution networks”, IEEE Transaction on Power Delivery, vol. 23, pp. 1620–1628, 2008.
[77] Z. W. Geem, J. H. Kim, and G. Loganathan, “A new heuristic optimization algorithm: Harmony search”, Simulation, vol. 76, pp. 60–68, 2001.
[78] R. S. Al Abri, E. F. El-Saadany, and Y. M. Atwa, “Optimal placement and sizing method to improve the voltage stability margin in a distribution system using distributed generation”, IEEE Transaction on Power Systems, vol. 28, pp. 326–334, 2013.
[79] H.-G. Yeh, D. F. Gayme, and S. H. Low, “Adaptive VAR control for distribution circuits with photovoltaic generators,” IEEE Trans. Power Syst., vol. 27, pp. 1656–1663, 2012.
[80] J. M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, E. Galván, R. P. Guisado, andM. A. Prats et al., “Power-electronic systems for the grid integration of renewable energy sources: A survey”, IEEE Transactions on Industrial Electronics, vol. 53, pp. 1002–1016, 2006.
[81] M. Farivar, C. R. Clarke, S. H. Low, and K.M. Chandy, “Inverter VAR control for distribution systems with renewables”, 2011 IEEE Int. Conf. Smart Grid Communications, pp. 457–462, 2011.
[82] T. Niknam, M. Zare, and J. Aghaei, “Scenario-based multiobjective Volt/Var control in distribution networks including renewable energy sources”, IEEE Transaction on Power Delivery, vol. 27, pp. 2004–2019, 2012.
[83] Melissa A. Peskin, Phillip W. Powell, and Edmund J. Hall. “Conservation voltage reduction with feedback from advanced metering infrastructure”, Transmission and Distribution Conference and Exposition, 2012.
[84] S.Z. Zhu, Z.Y. Dong, K.P. Wong, Z.H. Wang. “Power System Dynamic Load Identification and Stability”. 2000 International Conference on Power System Technology, Vol. 1, pp. 13 -18, Dec. 2000.
[85] Y.G.Zeng, A. Berizzi, P. Marannino, “ Voltage Stability Analysis Considering Dynamic Load Model”, 1997 Fourth International Conference on Advances in Power System Control, Operation and Management”, pp. 864-72, Nov. 1987.
[86] 盧展南等,”AMI電表資料在配電系統負載預測之應用”,資策會研究計畫期末報告,2010年12月。
[87] C. S. Chen, T. T. Ku and C. H. Lin, "Design of Phase Identification System to Support Three-Phase Loading Balance of Distribution Feeders", IEEE Industrial and Commercial Power Systems Technical Conference, 2011.
[88] T. T. Ku, C. S. Chen, C. H. Lin, M. S. Kang, H. J. Chuang, “Identification of customers served by distribution transformer using power line carrier technology”, 4th IEEE Industrial Electronics and Applications Conf., pp. 3476-3481, 2009.
[89] A. Monticelli, “State Estimation in Electric Power Systems - A Generalized Approach”, Kluwer Academic Publishers, 1999.
[90] M. E. Baran and A. W. Kelley, “State estimation for real-time monitoring of distribution systems”, IEEE Transaction on Power Systems, Vol. 9, pp. 1601–1609, Aug. 1994.
[91] C. N. Lu, J. H. Teng, and W. E.-H. Liu, “Distribution system state estimation”, IEEE Transaction on Power Systems, Vol. 10, No. 1, pp. 229-240, Feb. 1995.
[92] M. Baran and T. E. McDermott, “Distribution system state estimation using AMI data”, IEEE PES PSCE, Seattle, WA, pp. 1–3, Mar. 2009.
[93] J. Wan and K. N. Miu, “Weighted least squares methods for load estimation in distribution networks,” IEEE Transaction on Power Systems, vol. 18, no. 4, pp. 1338-1345, Nov. 2003.
[94] K. Li, “State estimation for power distribution system and measurement impacts”, IEEE Transactions on Power Systems, Vol. 11, No. 2, pp. 911–916, May 1996.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code