Responsive image
博碩士論文 etd-0527118-152359 詳細資訊
Title page for etd-0527118-152359
論文名稱
Title
環保量子點之太陽能電池元件應用
Application of eco-friendly quantum dots on solar cells
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
64
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-06-20
繳交日期
Date of Submission
2018-06-27
關鍵字
Keywords
太陽能電池色轉換層、環保量子點、量子點太陽能電池、碳量子點、奈米銅團簇
Cu nanoclusters, Eco-friendly quantum dots, Quantum dots solar cell, Carbon quantum dots, Luminescent down-shifting layers
統計
Statistics
本論文已被瀏覽 5646 次,被下載 0
The thesis/dissertation has been browsed 5646 times, has been downloaded 0 times.
中文摘要
本論文研究主題包含環保量子點製作與環保量子點於太陽能電池之應用,成功製作出三個種類環保量子點:碳量子點、奈米銅團簇與二硫化銀銦量子點,鑑定其光學物理性質;並分別以奈米銅團簇量子點及二硫化銀銦量子點製作染敏化太陽能電池,效率分別為0.012%與 0.042%;亦利用碳量子點製作太陽能電池色轉換層薄膜以搭配CIGS太陽能電池,並藉由光學分析探討此量子點薄膜對太陽能電池的影響。
Abstract
In this thesis, we fabricated eco-friendly quantum dots (QDs) and then utilized them in solar cells. Carbon quantum dots (CDs), Cu nanoclusters (CuNCs) and AgInS2 (AIS) quantum dots was successfully synthesized along with the measurements of their photophysical properties. CuNCs and AIS were implemented in dye-sensitized solar cells, garnering photoelectric conversion efficiency of 0.012% and 0.042%, respectively. Luminescent down-shifting (LDS) layer for CIGS thin-film solar cell was realized by CDs. The repercussions of the quantum yield and scattering of the quantum dots LDS layers to CIGS solar cells efficiency was also studied.
目次 Table of Contents
摘要 ........................................................................................................................................... iv
Abstract ..................................................................................................................................... v
圖目錄 ......................................................................................................................................viii
表目錄 ........................................................................................................................................x
第一章緒論 ............................................................................................................................. 1
1-1 前言 ................................................................................................................................ 1
1-2量子點太陽能電池發展 ................................................................................................. 2
1-3研究動機與目的 ............................................................................................................. 3
第二章基礎理論 ..................................................................................................................... 4
2-1 量子點原理 .................................................................................................................... 4
2-2量子點結構 ..................................................................................................................... 5
2-3環保量子點 ..................................................................................................................... 6
2-3-1碳量子點 ................................................................................................................. 6
2-3-2金屬之奈米團簇 ..................................................................................................... 7
2-3-3半導體量子點 ......................................................................................................... 7
2-4微波合成 ......................................................................................................................... 8
2-5染料敏化太陽能電池操作原理 ..................................................................................... 9
2-6太陽能電池光電特性分析 ........................................................................................... 11
第三章實驗設計 ................................................................................................................... 13
3-1 簡介 .............................................................................................................................. 13
3-2量子點的合成 ............................................................................................................... 13
3-2-1碳量子點(Carbon dots, CDs) ................................................................................ 13
3-2-2銅的奈米團簇(Cu Nanocluster, CuNCs) .............................................................. 14
3-2-3二硫化銀銦量子點(AgInS2,AIS) .......................................................................... 16
3-3量子點太陽能電池製程 ............................................................................................... 17
3-4太陽能電池的色轉換薄膜 ........................................................................................... 20
3-4-1 PVA薄膜 .............................................................................................................. 21
vii
3-4-2 PVB薄膜製作 ....................................................................................................... 22
3-5時間相關單光子計數(Time-correlated Single Photon Counting, TCSPC) ................. 24
3-6螢光量子效率(Photoluminescence quantum yield) ..................................................... 25
第四章研究結果與討論 ....................................................................................................... 27
4-1 簡介 .............................................................................................................................. 27
4-2環保量子點光物理特性 ............................................................................................... 28
4-3量子點太陽能電池之光電轉換效率 ........................................................................... 33
4-4太陽能電池色轉換薄膜的效率分析 ........................................................................... 39
第五章結論與未來工作 ....................................................................................................... 48
參考文獻 ................................................................................................................................. 49
參考文獻 References
[1] 台灣電力公司
[2] GREEN, Martin A., et al. Solar cell efficiency tables (version 37). Progress in photovoltaics: research and applications, 2011, 19.1: 84-92.
[3] NOZIK, A. J. Quantum dot solar cells. Physica E: Low-dimensional Systems and Nanostructures, 2002, 14.1-2: 115-120.
[4] LEE, Yuh‐Lang; LO, Yi‐Siou. Highly efficient quantum‐dot‐sensitized solar cell based on co‐sensitization of CdS/CdSe. Advanced Functional Materials, 2009, 19.4: 604-609.
[5] HETSCH, Frederik, et al. Semiconductor nanocrystal quantum dots as solar cell components and photosensitizers: material, charge transfer, and separation aspects of some device topologies. The Journal of Physical Chemistry Letters, 2011, 2.15: 1879-1887.
[6] MARTÍ, A., et al. Production of photocurrent due to intermediate-to-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell. Physical Review Letters, 2006, 97.24: 247701.
[7] HALDANE, F. D. M. 'Luttinger liquid theory'of one-dimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas. Journal of Physics C: Solid State Physics, 1981, 14.19: 2585.
[8] 姜智程編著,環保量子點應用於發光二極體及螢光太陽能聚光版,中原大學物理學研究所,2016
[9] JIANG, Z. C., et al. A facile and low-cost method to enhance the internal quantum yield and external light-extraction efficiency for flexible light-emitting carbon-dot films. Scientific reports, 2016, 6: 19991.
[10] HICKS, L. D.; DRESSELHAUS, Mildred S. Effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B, 1993, 47.19: 12727.
[11] BALAGURU, R. John Bosco; JEYAPRAKASH, B. G. Quantum Wells, Quantum Wires, Quantum Dots, Quantum Limit of Conductance, Quantum Capacitance & Quantum HALL Effect.
[12] GRAHN, Holger T. Introduction to semiconductor physics. World Scientific Publishing Company, 1999.
[13] . ALIVISATOS, A. Paul. Semiconductor clusters, nanocrystals, and quantum dots. science, 1996, 271.5251: 933-937.
[14] HALDANE, F. D. M. 'Luttinger liquid theory'of one-dimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas. Journal of Physics C: Solid State Physics, 1981, 14.19: 2585.
[15] NORRIS, David J., et al. Size dependent optical spectroscopy of II–VI semiconductor nanocrystallites (quantum dots). Zeitschrift für Physik D Atoms, Molecules and Clusters, 1993, 26.1: 355-357.
[16] REISS, Peter; PROTIERE, Myriam; LI, Liang. Core/shell semiconductor nanocrystals. small, 2009, 5.2: 154-168.
[17] YAGI, Akiko; SEGAWA, Yasutomo; ITAMI, Kenichiro. Synthesis and properties of [9] cyclo-1, 4-naphthylene: a π-extended carbon nanoring. Journal of the American Chemical Society, 2012, 134.6: 2962-2965.
[18] LINEHAN, Keith; DOYLE, Hugh. Solution reduction synthesis of amine terminated carbon quantum dots. RSC Advances, 2014, 4.24: 12094-12097.
[19] DE LA HOZ, Antonio; DIAZ-ORTIZ, Angel; MORENO, Andres. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chemical Society Reviews, 2005, 34.2: 164-178.
[20] KIM, Namhun, et al. Color temperature control of quantum dot white light emitting diodes by grafting organic fluorescent molecules. Journal of Materials Chemistry C, 2014, 2.46: 9800-9804.
[21] YANG, Zusing, et al. Quantum dot-sensitized solar cells incorporating nanomaterials. Chemical Communications, 2011, 47.34: 9561-9571.
[22] HETSCH, Frederik, et al. Semiconductor nanocrystal quantum dots as solar cell components and photosensitizers: material, charge transfer, and separation aspects of some device topologies. The Journal of Physical Chemistry Letters, 2011, 2.15: 1879-1887.
[23] SAHU, Swagatika, et al. Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chemical Communications, 2012, 48.70: 8835-8837.
[24] QU, Songnan, et al. Amplified spontaneous green emission and lasing emission from carbon nanoparticles. Advanced Functional Materials, 2014, 24.18: 2689-2695.
[25] KWON, Woosung, et al. Size‐Controlled Soft‐Template Synthesis of Carbon Nanodots toward Versatile Photoactive Materials. Small, 2014, 10.3: 506-513.
[26] GAN, Zhixing; XU, Hao; HAO, Yanling. Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: consensus, debates and challenges. Nanoscale, 2016, 8.15: 7794-7807.
[27] GAN, Zhixing, et al. Mechanism of photoluminescence from chemically derived graphene oxide: role of chemical reduction. Advanced Optical Materials, 2013, 1.12: 926-932.
[28] BRISCOE, Joe, et al. Biomass‐derived carbon quantum dot sensitizers for solid‐state nanostructured solar cells. Angewandte Chemie International Edition, 2015, 54.15: 4463-4468.
[29] SUMNER, Ryan, et al. Analysis of optical losses in high-efficiency CuInS2-based nanocrystal luminescent solar concentrators: balancing absorption versus scattering. The Journal of Physical Chemistry C, 2017, 121.6: 3252-3260.
[30] MELTZER, R. S., et al. Dependence of fluorescence lifetimes of Y 2 O 3: E u 3+ nanoparticles on the surrounding medium. Physical Review B, 1999, 60.20: R14012.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code