Responsive image
博碩士論文 etd-0528104-133744 詳細資訊
Title page for etd-0528104-133744
論文名稱
Title
鎘對稻米的過氧化酶活性之影響
Effect of Cadmium on Peroxidase Activity in Rice
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
29
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-05-21
繳交日期
Date of Submission
2004-05-28
關鍵字
Keywords
木質素、過氧化氫、鎘、水稻、過氧化酶
lignin, peroxidase, hydrogen peroxide, Oryza sativa, Cadmium
統計
Statistics
本論文已被瀏覽 5709 次,被下載 1882
The thesis/dissertation has been browsed 5709 times, has been downloaded 1882 times.
中文摘要
鎘處理水稻 (Oryza sativa cv. Tainung 67 and Taichung native 1) 幼苗都會有明顯抑制根部的生長,在48小時鎘處理中,台中在來一號根部生長抑制較台農67號為嚴重。耐鎘品系--台農67號其根部受鎘處理後生成較多之過氧化酶,同時合成較多之木質素,而且將過氧化氫分解。而台中在來一號品系受鎘處理後,其生成的木質素較少,而且有較多的過氧化氫之累積,因此推論台中再來一號對於鎘的耐受性較差。
Abstract
Cd significantly inhibited the growth of both rice cultivars. The Tainung 67 cultivar is more tolerant to Cd than Taichung 1 cultivar after 48 h incubation in CdCl2 solution. The Cd tolerant cultivar—Tainung 67’s PODs in roots might synthesize more lignin in Cd-treatments. Meanwhile, the decrease of H2O2 levels is accompanied with the enhancement of POD activity in Cd-treated tissues. PODs here might also remove excess H2O2, thus serving detoxifying role and synthesizing more lignin for protection. In Taichung 1 cultivar, the accumulation of H2O2 in Cd-treated tissues could be due to the less amount of POD enhancement induced by Cd. In response to Cd treatment, the Taichung 1 cultivar also synthesizes little lignin, and therefore is Cd-sensitive.
目次 Table of Contents
Chinese abstract --------------------------------------------------------I
English abstract -------------------------------------------------------II
Table of contents -----------------------------------------------------III
List of figures ---------------------------------------------------------IV
Introduction ------------------------------------------------------------1
Materials and methods ------------------------------------------------5
Results ------------------------------------------------------------------9
Discussion -------------------------------------------------------------12
Reference --------------------------------------------------------------14
Figures -----------------------------------------------------------------19
參考文獻 References
Baccouch, S., Chaoui, A., and Ferjani, E.E. (1998). Nickel-induced oxidative damage and antioxidant responses in Zea mays shoots. Plant Physiology and Biochemistry 36, 689-694.
Blom, T. J. M., Sierra, M., van Vliet, T. B., Franke-van Dijk, M. E. I., de Koning, P., van Iren, F., Verpoorte, R., and Libbenga, K.R. (1991). Uptake and accumulation of ajmalicine into isolated vacuoles of cultured cells of Catharanthus roseus (L.) G. Don. and its conversion into serpentine. Planta 183, 170-177.
Boudet, A. M. (2000). Lignins and lignification: Selected issues. Plant Biochemistry 38, 81-96.
Chen, E. L., Chen, Y. A., Chen, L.M., and Liu, Z. H. (2002). Effect of copper on peroxidase activity and lignin content in Raphanus sativus. Plant Physiology and Biochemistry 40, 439–444.
Chen, S.L., and Kao, C.H. (1995). Cd induced changes in proline level and peroxidase activity in roots of rice seedlings. Plant Growth Regulation 17, 67–71.
Fry, S.C. (1983). Feruloyted pectins from the primary cell-wall : their structures and possible functions. Plants 157, 111-123.
Gallego, S.M., Benavides, M.P., and Tomaro, M.L. (1996). Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Science 121, 151-159.
Gaspar, T., Penel, C., Thorpe, T., and Greppin, H. (1982). Peroxidases 1970-1980. A Survey of Their Biochemical and Physiological Roles in Higher Plants. University of Geneva, Switzerland.
Gavnholta, B., and Larsenb, K. (2002). Molecular biology of plant laccases in relation to lignin formation. Physiologia Plantarum 116, 273–280.
Gavnholta, B., Larsenb, K., and Søren, K. (2002). Isolation and characterisation of laccase cDNAs from meristematic and stem tissues of ryegrass (Lolium perenne). Plant science 162, 873-885.
Gazaryan, I. G., Chubar, T. A., Mareeva, E. A., Largimini, L. M., Vanhuystee, R. B., and Thorneley, R. N. F. (1999). Aerobic oxidation of indole-3-acetic acid catalyzed by anionic and cationic peanut peroxidase. Phytochemistry 51, 175-186.
Jiang, Z.Y.,Woodland, A.C.S., and Wolff, S.P. (1990). Hydrogen peroxide production during experimental protein glycation, FEBS 268, 69-71.
Largimini, L.M., Joly, R.J., Dunlap, J.R., and Liu, T.T.Y. (1997). The consequence of peroxidase overexpression in transgenic plants on root growth and development, Plant Molecular Biology 33, 887–895.
Lewis, N.G., Davin, L.B., and Sarkanen, S. (1999). The nature and function of lignins. In: Barton DHR, Nakasaki K, Methcohn O (eds) Comprehensive Natural Products Chemistry. Elsevier Science 3, 617–745.
Lin, C.C., and Kao, C.H. (2000). Effect of NaCl stress on H2O2 metabolism in rice leaves. Plant Growth Regulation 30, 151–155.
Lin, C.C., and Kao, C.H. (1999). NaCl induced changes in ionically bound peroxidase activity in roots of rice seedlings.Plant Soil 216, 147–153.
Mäder, M. (1992). Compartmentation of peroxidase isoenzymes in plant cells. In C Penel, T Gaspar, H Greppin, eds. Plant Peroxidases 1980-1990. University of Geneva, Switzerland, pp 37-46.
Mansouri, I.E., Mercado, J.A., Santiago-Domenech, N., Pliego-Alfaro, F., Valpuesta, V., and Quesada, M.A. (1999). Biochemical and phenotypical characterization of transgenic tomato plants overexpressing a basic peroxidase. Physiology of Plant 106, 355–362.
Nriagu, J. O., and Pacyna, J. M. (1988). Quantitative assessment of worldwide contamination of air, water and soils with trace metals. Nature 333, 134-139.
Prasad, K.V.S.K., Pardha Saradhi, P., and Sharmila, P. (1999). Concerted action of antioxidant enzymes and curtailed growth under zinc toxicity in Brassica juncea. Environment Experimental Botany 42, 1–10.
Prasad, T. K., Anderson, M. D., Martin, B.A., and Steward, C.R. (1994). Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6, 65-74.
Quiroga, M., Guerrero, C., Botella, M. A., Barceló, A., Amaya, I., Medina, M. I., Alonso, F. J., Forchetti, S. M., Tigier, H., and Valpuesta, V. (2000) A tomato peroxidase involved in the synthesis of lignin and suberin. Plant Physiology 122, 1119-1127.
Radotic, K., Ducic, T., and Mutavdzic, D. (2000). Changes in peroxidase activity and isoenzymes in spruce needles after exposure to different concentrations of cadmium. Environment Experimental Botany 44, 105–113.
Rucinska, R., Waplak, S., and Gwozdz, E.A. (1999). Free radical formation and activity of antioxidant enzymes in lupin roots to lead. Plant Physiology 37, 187–194.
Schützendübel, A., Schwanz, P., Teichmann, T., Gross, K., Langenfeld-Heyser, R., Godbold, D. L., and Polle, A. (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiology 127, 887-898.
Shah,K., Kumar, R. G., Verma, S., and Dubey, R.S. (2001). Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Science 161, 1135–1144.
Shah,K., and Dubey, R.S. (1998). Cadmium elevates level of protein, amino acids and alters activity of proteolytic enzymes in germinating rice seeds. Acta Physiology of Plant 20, 189–196.
Sitbon, F., Hennion, S., Little, C.H.A., and Sundberg, B. (1999). Enhanced ethylene production and peroxidase activity in IAA-overproducing transgenic tobacco plants is associated with increased lignin content and altered lignin composition. Plant Science 141, 165–171.
Takabe, K., Takeuchi, M., Sato, T., Ito, M., and Fujita, M. (2001). lmmunocytochemical Localization of Enzymes Involved in Lignification of the Cell Wall. Journal of Plant Research 114, 509-515.

Wu, G. S., Shortt, B. J., Lawrence, E. B., León, J., Fitzsimmons, K. C., Levine, E. B., Raskin, I., and Shah, D. M. (1997). Activation of host defense mechanisms by elevated production of H2O2 in transgenic plants. Plant Physiology 115, 427-435.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code