Responsive image
博碩士論文 etd-0528114-143755 詳細資訊
Title page for etd-0528114-143755
論文名稱
Title
Zn(Cr1-xVx)2O4 ( X = 0, 0.2, 0.4, 0.6, 0.8, 1)樣品製備及磁性與介電性質研究
The Study of Sample Preparation, Magnetic and Dielectric Properties on Zn(Cr1-xVx)2O4 ( X = 0, 0.2, 0.4, 0.6, 0.8, 1)
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
105
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-05-31
繳交日期
Date of Submission
2014-06-28
關鍵字
Keywords
反鐵磁、多鐵材料、ZnCr2O4、尖晶石結構、自旋頓挫態系統
spin frustrated system, antiferromagnetic, spinel structure, multiferroic material, ZnCr2O4
統計
Statistics
本論文已被瀏覽 5722 次,被下載 481
The thesis/dissertation has been browsed 5722 times, has been downloaded 481 times.
中文摘要
從參考文獻中,得知單晶的ZnCr2O4在12.5 K具有反鐵磁性質。且介電常數對溫度圖中,約在15 K~30 K出現波峰,波峰最大值隨著頻率的增加往高溫區位移。
另一方面,我們發現ZnV2O4跟ZnCr2O4有著許多類似的特質。首先,ZnV2O4與ZnCr2O4都是屬於尖晶石結構,也因此X-ray繞射圖的繞射峰位置一致。質量上,釩(Vanadium)與鉻(Chromium)的原子序只相差一,原子量大小也相近。磁性上,ZnV2O4跟ZnCr2O4一樣都是屬於反鐵磁性質。基於以上幾種原因我們認為觀察這兩種材料的中間過程是有趣且可行的。於是使用固態反應法(solid state reaction method)製作Zn(Cr1-xVx)2O4 ( X = 0, 0.2, 0.4, 0.6, 0.8, 1)這一系列的樣品。
經過反覆的嘗試,我們找到製作這一系列樣品的最佳方式。經過GSAS的擬合與計算後,驗證了樣品的品質是良好的。磁性方面,從X - T的量測中得知,ZnCr2O4的磁性相轉變溫度為12.5 K,其磁性來源為Cr3離子。而中間系列的樣品,在12.5 K與15.2 K之間出現磁化率最大值,隨著釩(Vanadium) 摻雜比例的增加,磁化率最大值往高溫區位移。在介電常數的量測中,ZnV2O4不具有鐵電相轉變,因此我們判定ZnV2O4不是多鐵材料。而ZnCr2O4雖然有反鐵磁相變,但是我們沒有觀察到鐵電相變。
Abstract
In the references, the ZnCr2O4 single crystal has the anti-ferromagnetic transition at temperature 12.5 K. The result of dielectric constant to the temperature shows a peak between 15 K and 30 K. This peak will shift to high temperature with the increasing frequency.
On the other hand, we found that ZnV2O4 has some similar properties with ZnCr2O4. First, ZnCr2O4 and ZnV2O4 are both spinel structures. Therefore, they have the same XRD pattern. Second, Vanadium’s atomic number is near to Chromium and both of them have close atomic mass. Third, both of them are anti-ferromagnetic in their magnetic properties. All the reasons we mentioned excited our curiosity to the research in these materials by using solid state reaction method to provide the series of Zn(Cr1-xVx)2O4 ( X = 0, 0.2, 0.4, 0.6, 0.8, ) samples.
After the growth process, we used GSAS calculation to prove all the samples are in good quality. From the X – T measurement, we found that ZnCr2O4 has the magnetic phase transition at temperature 12.5 K and that indicated the source of magnetic comes from Cr3+ ions. Moreover, the samples which with medium Vanadium doping ratios have the maximum magnetic susceptibilities showed between 12.5 K and 15.2 K. With the increasing of Vanadium doping ratios, the maximum magnetic susceptibilities moved toward to higher temperature. From the measurement of dielectric constant, ZnV2O4 does not have ferroelectric transition; therefore we determined it is not multiferroics. For ZnCr2O4, although it has the anti-ferromagnetic transition, there did not show the ferroelectric transition.
目次 Table of Contents
目錄

致謝..........................................................................................................................iii
論文摘要...................................................................................................................v
Abstract...................................................................................................................vi
目錄.........................................................................................................................vii
圖目錄......................................................................................................................ix
第一章:簡介…………………………………………………………………..……1
1.1 多鐵性材料…………………………………………………………...…..1
1.2 幾何自旋頓挫態系統.................................................................................6
1.3 樣品介紹………………………………………………………………...10
1.3.1 ZnCr2O4系統…………………………………………………….10
1.3.2 ZnV2O4系統……………………………………………………..21
1.4 Zn(Cr1-xVx)2O4,X = 0, 0.2, 0.4, 0.6, 0.8, 1.0研究動機………………...23
第二章:實驗儀器與方法…………………………………………………………24
2.1 X-ray繞射儀……………………………………………………………..24
2.1.1 粉末繞射分析儀 D5000………………………………………….24
2.1.2 粉末繞射分析儀 D2 Phaser……………………………………...27
2.2 磁性量測儀器…………………………………………………………...29
2.2.1 超導量子干涉磁量儀……………………...……………………29
2.2.2 磁性量測方式………………………………...…………………37
2.3介電性量測儀器……………………………………….…………………39
2.3.1 Close Cycle Refrigerator System………………...………………39
2.3.2 平行板電容樣品製作……………………………...……………40
第三章:實驗結果與討論…………………………………………………………41
3.1 Zn(Cr1-xVx)2O4,X=0, 0.2, 0.4, 0.6, 0.8, 1.0樣品製備與X-ray結構檢測.41
3.1.1第一次樣品製備(ZnCr2O-4)……………………………..…………41
3.1.2第二次樣品製備(Zn(Cr1-xVx)2O4,X = 0, 0.2, 0.8, 1.0)……….….45
3.1.3第三次樣品製備與X-ray結構檢測…………..…………..………48
3.2磁性實驗結果與討論…………………………………………….………62
3.3介電性實驗結果與討論………………………………………….………79
第四章:結論………………………………………………………………………83
參考文獻………………………………………………………………….………85
參考文獻 References
[1] H. Schmid, 'Multi-ferroic magnetoelectrics', Ferroelectrics 162, 317 (1994).

[2] B. Ahmad, A. Mahmood, M. N. Ashiq, M. A. Malana, M. Najam-Ul-Haq, M. F. Ehsan, M. F. Warsi, and I. Shakir, 'New multiferroics BiFe1-2xAlxMnxO3 nanoparticles: Synthesis and evaluation of various structural, physical, electrical, dielectric and magnetic parameters', J. Alloys Compd. 590, 193-198 (2014).

[3] V. A. Khomchenko, L. C. J. Pereira, and J. A. Paixao, 'Structural and magnetic phase transitions in Bi1-xNdxFe1-xMnxO3 multiferroics', J. Appl. Phys. 115, 034102 (2014).

[4] D. Varshney, P. Sharma, S. Satapathy, and P. K. Gupta, 'Structural, electrical and magnetic properties of Bi0.825Pb0.175FeO3, and Bi0.725La0.1Pb0.175FeO3 multiferroics', Mater. Res. Bull. 49, 345-351 (2014).

[5] P. P. Rout, S. K. Pradhan, S. K. Das, S. Samantaray, and B. K. Roul, 'Enhancement of magnetic and ferroelectric behaviour in (Ca, Co)co-doped HoMnO3 multiferroics', J. Mag. Mag. Mater. 345,106-110 (2013).

[6] Y. Tokura, 'Multiferroics—toward strong coupling between magnetization and polarization in a solid', J. Mag. Mag. Mater. 310, 1145 (2007).

[7] G. Lawes, A. B. Harris, T. Kimura, N. Rogado, R. J. Cava, A. Aharony, O. Entin-Wohlman, T. Yildirim, M. Kenzelmann, C. Broholm, and A. P. Ramirez, 'Magnetically driven ferroelectric order in Ni3V2O8', Phys. Rev. Lett. 95, 087205 (2005).

[8] M. Kenzelmann, A. B. Harris, S. Jonas, C. Broholm, J. Schefer, S. B. Kim, C. L. Zhang, S. W. Cheong, O. P. Vajk, and J. W. Lynn, 'Magnetic inversion symmetry breaking and ferroelectricity in TbMnO3', Phys. Rev. Lett. 95, 087206 (2005).

[9] S. W. Cheong and M. Mostovoy, 'Multiferroics : a magentic twist for ferroelectricity', Nature Mater. 6, 13 (2007).

[10] M. Fiebig, ' The revival of the magnetoelectric effect', J. Phys. D 38, 123 (2005).

[11] J. P. Velev, S. S. Jaswal, and E. Y. Tsymbal, 'Multi-ferroic and magnetoelectric materials and interfaces', Phil. Trans. R. Soc. A 369, 3069 (2010).

[12] N. A. Spalddin and M. Fiebig, 'The renaissance of magnetoelectric multiferroic', Science 309, 391 (2005).

[13] R. S. Freitas, J. F. Mitchell, and P. Schiffer, 'Magnetodielectric consequences of phase separation in the colossal magnetoresistance manganite Pr0.7Ca0.3MnO3', Phys. Rev. B 72, 144429 (2005).

[14] J. P. Rivera, 'A short review of the magnetodielectric effect and related experimental techniques on single phase (multi-) ferroics', Eur. Phys. J. B 71, 299 (2009).

[15] B. Lorenz, Y. Q. Wang, Y. Y. Sun, and C. W. Chu, 'Large magnetodielectric effects in orthorhombic HoMnO3 and YMnO3', Phys. Rev. B 70, 212412 (2004).

[16] S. Mukherjee, C. H. Chen, C. C. Chou, K. F. Tseng, B. K. Chaudhuri, and H. D. Yang, 'Colossal dielectric and magnetodielectric effect in Er2O3 nanoparticles embedded in a SiO2 glass matrix', Phys. Rev. B 82, 104107 (2010).

[17] D. Hreniak, L. Marciniak, W. Strek, F. Piccinelli, A. Speghini, and M. Bettinelli, 'Comment on “Colossal dielectric and magnetodielectric effect in Er2O3 nanoparticles embedded in a SiO2 glass matrix”', Phys. Rev. B 84, 056102 (2011).

[18] S. Mukherjee, C. H. Chen, C. C. Chou, K. F. Tseng, B. K. Chaudhuri, and H. D. Yang, 'Reply to “Comment on ‘Colossal dielectric and magnetodielectric effect in Er2O3 nanoparticles embedded in a SiO2 glass matrix”', Phys. Rev. B 84, 056103 (2011).

[19] W. Eerenstein, N. D. Mathur, and J. F. Scott, 'Multiferroic and magnetoelectric materials', Nature (London) 442, 17 (2006).

[20] G. H. Wannier, 'Antiferromagnetism the triangular ising net', Phys. Rev. 79, 357 (1950).

[21] S. Nakatsuji, Y. Nambu, H. Tonomura, O. Sakai, S. Jonas, C. Broholm, H. Tsunetsugu, Y. Qiu, Y. Maeno, 'Spin disorder on a triangular lattice', Science 309, 1697 (2005).

[22] I. Terasaki, Y. Sasago, and K. Uchinokura, 'Large thermoelectric power in NaCo2O4 single crystals', Phys. Rev. B 56, R12685 (1997).

[23] D. Grohol, K. Matan, J. H. Cho, S. H. Lee, J. W. Lynn, D. G. Nocera and Y. S. Lee, 'Spin chirality on a two-dimensional frustrated lattice', Nature Mater. 4, 323 (2005).

[24] Andrew D. Rutenberg, 'Classical antiferromagnets on the Kagomé lattice', Phys. Rev. B 45, 13 (1992).

[25] T. M. McQueen, D. V. West, B. Muegge, Q. Huang, K. Noble, H. W. Zandbergen, and R. J. Cava, 'Frustrated ferroelectricity in niobate pyrochlores', J. Phys. : Condens. Matter 20, 235210 (2008).

[26] K. Matsuhira, M. Tokunaga, M. Wakeshima, Y. Hinatsu, and S. Takagi, 'Giant magnetoresistance effect in the metal-insulator transition of pyrochlore oxide Nd2Ir2O7', J. Phys. Soc. Jpn. 82, 023706 (2013).

[27] S. T. Bramwell, and M. J. P. Gingras, 'Spin ice state I frustrated magnetic pyrochlore material’s', Science 294, 1495 (2001).

[28] B. P. Uberuaga, D. Bacorisen, R. Smith, J. A. Ball, R. W. Grimes, A. F. Voter, and K. E. Sickafus, 'Defect kinetics in spinels: Long-time simulations of MgAl2O4, MgGa2O4 and MgIn2O4', Phys. Rev. B 75, 10 (2007).

[29] W. Y. Ching, S. Aryal, P. Rulis, and W. Schnick, 'Electronic structure and physical properties of the spinel-type phase of BeP2N4 from all-electron density functional calculations', Phys. Rev. B 83, 155109 (2011).

[30] W. A. Deer, R. A. Howie, and J. Zussman, 'An introduction to the rock-forming minerals', 2nd ed., 558-569 (1992).

[31] V. Kocsis, S. Bord´acs, D. Varjas, K. Penc, A. Abouelsayed, C. A. Kuntscher, K. Ohgushi, Y. Tokura, and I. K´ezsm´arki, 'Magnetoelasticity in ACr2O4 spinel oxides (A = Mn, Fe, Co, Ni, and Cu)', Phys. Rev. B 87, 064416 (2013).

[32] Ch. Kant, J. Deisenhofer, T. Rudolf, F. Mayr, F. Schrettle, and A. Loidl, 'Optical phonons, spin correlations, and spin-phonon coupling in the frustrated pyrochlore magnets CdCr2O4 and ZnCr2O4', Phys. Rev. B 80, 214417 (2009).

[33] S. Chen, Y. Wu, P Cui, W. Chu, X. Chen, and Z. Wu, 'Cation distribution in ZnCr2O4 nanocrystals investigated by X-ray absorption fine structure spectroscopy', J. Phys. Chem. C 47, 117 (2013).

[34] L. Mancic, Z. Marinkovic, P. Vulic, C. Moral, and O. Milosevic, 'Morphology, structure and nonstoichiometry of ZnCr2O4 nanophased powder', Sensors 3, 415-423 (2003).

[35] S. V. Bangale and S. R. Bamane, 'Preparation and electrical properties of nanostructured spinel ZnCr2O4 by combustion route', J. Mater. Sci. 24, 277-281 (2013).

[36] D. Gingasu, I. Mindru, L. Patron, D. C. Culita, J. M. Calderon-Moreno, L. Diamandescu, M. Feder, and O. Oprea, 'Precursor method—A nonconventional route for the synthesis of ZnCr2O4 spinel ', J. Phys. Chem. Solids 74, 1295-1302 (2013).

[37] S. A. Hosseinia, M. C. Alvarez-Galvan, J. L. G. Fierro, A. Niaei, and D. Salari, 'MCr2O4 (M = Co, Cu, and Zn) nanospinels for 2-propanol combustion : Correlation of structural properties with catalytic performance and stability', Science 39, 9253-9261 (2013).

[38] T. T. Gurgel, N. O. Moreno, and J. M. Soares, 'Magnetization properties study of ZnCr2O4 spinel normal', IEEE Tran. Mag. 49, 8 (2013).

[39] M. C. Kemei, P. T. Barton, S. L. Moffitt, M. W. Gaultois, J. A. Kurzman, R. Seshadri, M. R. Suchomel, and Y. Kim, 'Crystal structures of spin-Jahn–Teller-ordered MgCr2O4 and ZnCr2O4', J. Phys. Condens. Matter 25, 326001 (2013).

[40] C. Kant, J. Deisenhofer, V. Tsurkan, and A. Loidl, 'Magnetic susceptibility of the frustrated spinels ZnCr2O4, MgCr2O4 and CdCr2O4', J. Phys. Conference series 200, 032032 (2010).

[41] I. Kagomiya, K. Kohn, M. Toki, Y. Hata, and E. Kita, 'Dielectric anomaly of ZnCr2O4 at antiferromagnetic transition', J. Phys. Soc. Jpn. 71, 3, 916-921 (2002).

[42] I. Kagomiya, M. Toki, K. Kohn, Y. Hata, E. Kita, and K. Siratori, 'Magnetic clusters in three dimensional spin frustrated system ZnCr2O4', J. Mag. Mag. Mater. 272, 1031-1032 (2004).

[43] D. Baldomir, V. Pardo, S. Blanco-Canosa, F. Rivadulla, D. I. Khomskii, H. Wu, A. Pineiro, J. E. Arias, and J. Rivas, 'Electronic structure of dimerized spinel ZnV2O4', J. Mag. Mag. Mater. 321, 679-681 (2009).

[44] V. Pardo, S. Blanco-Canosa, F. Rivadulla, D. I. Khomskii, D. Baldomir, H. Wu, and J. Rivas, ' Homopolar bond formation in ZnV2O4 close to a metal-insulator transition', Phys. Rev. Lett. 101, 256403 (2008).

[45] Y. Yamashita and K. Ueda, 'Spin-driven jahn-teller distortion in a pyrochlore system', Phys. Rev. Lett. 85, 23 (2000).

[46] F. Duan, W. Dong, D. Shi, and M. Chen, 'Template-free synthesis of ZnV2O4 hollow spheres and their application for organic dye removal', Appl. Surf. Sci. 258, 189– 195 (2011).

[47] M. Reehuis, A. Krimmel, N. Buttgen, A. Loidl, and A. Prokofiev, 'Crystallographic and magnetic structure of ZnV2O4', Eur. Phys. J. B 35, 311–316 (2003).

[48] H. Mamiya and M. Onoda, 'Electronic states of vanadium spinels MgV2O4 and ZnV2O4', Solid State Commun. 95, 217-221 (1995).

[49] S. G. Ebbinghaus , J. Hanss, M. Klemm, and S. Hornb, 'Crystal structure and magnetic properties of ZnV2O4', J. Alloys Compounds 370, 75-79 (2004).

[50] A. N. Vasiliev, M. M. Markina, M. Isobe, and Y. Ueda, 'Specific heat and magnetic susceptibility of spinel compounds CdV2O4, ZnV2O4 and MgTi2O4' J. Mag. Mag. Mater. 300, 375-377 (2006).

[51] S. H. Lee, H. Takagi, D. Louca, M. Matsuda, S. Ji, H. Ueda, Y. Ueda, T. Katsufuji, J. H. Chung, S. Park, S. W. Cheong, and C. Broholm, 'Frustrated magnetism and cooperative phase transitions in spinels', J. Phys. Soc. Jpn. 79, 1 (2010).

[52] M. Merlin, C. Soffritti, and R. Vazquez, 'Effect of relative humidity and applied loads on the tribological behaviour of a steel / Cr2O3- ceramic coupling', Wear 303, 371–380 (2013).

[53] H. Ma, Y. Xu, Z. Rong, X. Cheng, S. Gao, X. Zhang, H. Zhao, and L. Huo, 'Highly toluene sensing performance based on monodispersed Cr2O3 porous microspheres', Sens. Actuators, B 174, 325-331 (2012).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code