Responsive image
博碩士論文 etd-0528114-221549 詳細資訊
Title page for etd-0528114-221549
論文名稱
Title
運用第一原理研究錫薄膜的拓撲電子特性
Topologically electronic properties of tin thin films:a first-principles study
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
68
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-05-29
繳交日期
Date of Submission
2014-06-28
關鍵字
Keywords
拓撲相變、二維拓撲絕緣體、第一原理、錫薄膜、量子自旋霍爾效應、電子結構
First-principles calculations, Electronic structures, Quantum spin Hall effect, Tin thin films, Topological phase transition, 2D topological insulators
統計
Statistics
本論文已被瀏覽 5657 次,被下載 444
The thesis/dissertation has been browsed 5657 times, has been downloaded 444 times.
中文摘要
我們利用第一原理電子結構計算預測新一類的二維 (2D) 拓撲絕緣體 (TIs) 基於氫化的錫薄膜。單一雙分子層 (bilayer) 錫薄膜 (stanene) 已經被確定為一個二維拓撲絕緣體。而將其雙面鍵結氫原子後,會從拓撲態轉變成一般態。根據我們的宇稱 (parity) 分析,錫烯 (stanene) 的兩層和三層雙分子層為一般態。此外,錫烷 (stanane) 兩層、三層和四層雙分子層是拓撲態。對高達三層雙分子層厚度錫薄膜雙面鍵結氫原子鈍化時,會從金屬變成絕緣體。最後,對碘鈍化 (iodine-terminated) 的錫薄膜沿著對角線 (111) 方向高達三層雙分子層進行了研究,發現皆為拓撲態,並且該系統兩層雙分子層以上為半金屬。與具有340 meV 能隙的單一雙分子層碘鈍化錫薄膜比較有很大的差距。因此,碘鈍化不能相同應用在兩層、三層雙分子層錫薄膜上。
Abstract
We use first-principles electronic structure calculations to predict a new class of two-dimensional (2D) topological insulators (TIs) in hydrogenated ultra-thin tin films. Single bilayer tin film had been identified as a two-dimensional topological insulator and it transforms into a trivial insulator after hydrogenation. Based on our parity analysis, tin films with two and three bilayers are in trivial phase. In addition, hydrogenated tin films with two, three and four bilayers are non-trivial. For the thickness of tin films up to three bilayers, the tin films were altered from metallic to insulating after H-passivations. Finally, the iodine-terminated tin films up to three bilayers were also studied and they all are found to be non-trivial. The systems become semi-metallic beyond single bilayer. Thus, a large gap of 340 meV for single iodine-terminated bilayer can not be replicated in iodine-terminated two- and three-bilayer tin films.
目次 Table of Contents
論文審定書 i
中文摘要 ii
Abstract iii
目錄 iv
圖次 v
表次 ix
1. 緒論: 1
2. 理論與方法: 3
2.1密度泛函理論 (DFT) 3
2.2贗位勢方法 10
2.3海爾曼-費曼理論 14
2.4拓撲絕緣體 15
2.5計算方法 18
3.結果與討論:四族(111)面薄膜 19
3.1四族(111)面薄膜之原子結構 19
3.2四族(111)面薄膜之能帶圖 24
3.3四族(111)面薄膜之宇稱分析 33
4.結果與討論:錫烯與錫烷 36
4.1錫烯與錫烷多層之原子結構 36
4.2應力引起錫烯與錫烷多層之拓撲相變 39
4.3碘鈍化之錫(111)面薄膜多層拓撲性質 51
5.結論: 53
參考文獻 54
參考文獻 References
[1]C. L. Kane, E. J. Mele,“Z2 Topological Order and the Quantum Spin Hall Effect.,” Phys. Rev. Lett. 95(14), 2005.
[2]B. A. Bernevig, S. C. Zhang,“Quantum Spin Hall Effect.,” Phys. Rev. Lett. 96(10), 2006.
[3]X. L. Qi, T. L. Hughes, S. C. Zhang,“Topological field theory of time-reversal invariant insulators.,” Phys. Rev. B 78(19), 2008.
[4]M. Z. Hasan, C. L. Kane,“Colloquium: Topological insulators.,” Rev.s of Modern Physics, 82(4), 3045–3067, 2010.
[5]J. E. Moore, “The birth of topological insulators.,” Nature, 464(7286), 194–198, 2010.
[6]X. L. Qi, S. C. Zhang,“Topological insulators and superconductors.,” Reviews of Modern Physics, 83(4), 1057–1110, 2011.
[7]Y. Ando,“Topological Insulator Materials.,” Journal of the Physics Society of Japan, 82(10), 102001, 2013.
[8]Y. Hor, A. Richardella, P. Roushan, Y. Xia, et al,“p-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications,” Phys. Rev. B 79(19), 2009.
[9]D. Hsieh, Y. Xia, , D. Qian, et al,“A tunable topological insulator in the spin helical Dirac transport regime,” Nature, 460(7259), 1101–1105, 2009.
[10]D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J. Dil, M. Hasan, et al, “Observation of Time-Reversal-Protected Single-Dirac-Cone Topological-Insulator States in Bi2Te3 and Sb2Te3,” Phys. Rev. Lett. 103(14), 2009.
[11]H. Lin, R. S. Markiewicz, L. A. Wray, L. Fu, M. Z. Hasan, A. Bansil,“Single-Dirac-Cone Topological Surface States in the TlBiSe2 Class of Topological Semiconductors,” Phys. Rev. Lett. 105(3), 2010.
[12]S. R. Park, W. S. Jung, C. Kim, D. J. Song, C. Kim, S. Kimura, et al, “Quasiparticle scattering and the protected nature of the topological states in a parent topological insulator Bi2Se3,” Phys. Rev. B 81(4), 2010.
[13]B. A. Bernevig, T. L. Hughes, S. C. Zhang,“Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells.,” Science, 314(5806), 1757–1761, 2006.
[14]M. Konig, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L. W. Molenkamp, S. C. Zhang, et al,“Quantum Spin Hall Insulator State in HgTe Quantum Wells.,” Science, 318(5851), 766–770, 2007.
[15]A. Roth, C. Brune, H. Buhmann, L. W. Molenkamp, J. Maciejko, X. L. Qi, S. C. Zhang,“Nonlocal Transport in the Quantum Spin Hall State.,” Science, 325(5938), 294–297, 2009.
[16]C. Liu, T. Hughes, X. L. Qi, K. Wang, S. C. Zhang,“Quantum Spin Hall Effect in Inverted Type-II Semiconductors.,” Phys. Rev. Lett. 100(23), 2008.
[17]I. Knez, R. R. Du, G. Sullivan,“Evidence for Helical Edge Modes in Inverted InAs/GaSb Quantum Wells.,” Phys. Rev. Lett. 107(13), 2011.
[18]A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim,“The electronic properties of graphene.,” Reviews of Modern Physics, 81(1), 109–162, 2009.
[19]M. Neupane, S. Y. Xu, L. A. Wray, A. Petersen, R. Shankar, N. Alidoust, M. Z. Hasan, et al,“Topological surface states and Dirac point tuning in ternary topological insulators,” Phys. Rev. B 85(23), 2012.
[20]C. C. Liu, W. Feng, Y. Yao,“Quantum Spin Hall Effect in Silicene and Two-Dimensional Germanium.,” Phys. Rev. Lett. 107(7), 2011.
[21]W. F. Tsai, C. Y. Huang, T. R. Chang, H. Lin, H. T. Jeng, A. Bansil,“Gated silicene as a tunable source of nearly 100% spin-polarized electrons.,” Nature Communications, 4, 1500, 2013.
[22]Y. Xu, B. Yan, H. J. Zhang, J. Wang, G. Xu, P. Tang, S. C. Zhang, et al,“Large-Gap Quantum Spin Hall Insulators in Tin Films.,” Phys. Rev. Lett. 111(13), 2013.
[23]Z. Zhu, Y. Cheng, U. Schwingenschlögl,“Topological Phase Transition in Layered GaS and GaSe.,” Phys. Rev. Lett. 108(26), 2012.
[24]L. Fu, C. Kane, E. Mele,“Topological Insulators in Three Dimensions.,” Phys. Rev. Lett. 98(10), 2007.
[25]M. Wada, S. Murakami, F. Freimuth, G. Bihlmayer,“Localized edge states in two-dimensional topological insulators: Ultrathin Bi films.,” Phys. Rev. B 83(12), 2011.
[26]Z. Q. Huang, F. C. Chuang, C. H. Hsu, Y. T. Liu, H. R. Chang, H. Lin, A. Bansil,“Nontrivial topological electronic structures in a single Bi(111) bilayer on different substrates: A first-principles study.,” Phys. Rev. B 88(16), 2013.
[27]Z. Liu, C. X. Liu, Y. S. Wu, W. H. Duan, F. Liu, J. Wu,“Stable Nontrivial Z2 Topology in Ultrathin Bi (111) Films: A First-Principles Study.,” Phys. Rev. Lett. 107(13), 2011.
[28]P. Zhang, Z. Liu, W. Duan, F. Liu, J. Wu,“Topological and electronic transitions in a Sb(111) nanofilm: The interplay between quantum confinement and surface effect.,” Phys. Rev. B 85(20), 2012.
[29]F. C. Chuang, C. H Hsu, C. Y Chen, Z. Q. Huang, V. Ozolins, H. Lin, A. Bansil,“Tunable topological electronic structures in Sb(111) bilayers: A first-principles study.,” Appl. Phys. Lett. 102(2), 022424, 2013.
[30]L. H. Thomas, Proc. Cambridge Phil. Roy. Soc. 23, 542, 1927.
[31]E. Fermi, Rend. Accad. Naz. Lincei, 6, 602, 1927.
[32]M. Born, J. R. Oppenheimer, Ann. Physik, 84, 457, 1927.
[33]P. Hohenberg and W. Kohn,“Inhomogeneous Electron Gas,” Phys. Rev. 136, B864, 1964.
[34]J. P. Perdew, Y. Wang,“Accurate and simple analytic representation of the electron-gas correlation energy,” Phys. Rev. B 45, 13244, 1992.
[35]B. H. Bransden, C. J. Joachain, Physics of atoms and molecules, Prentice Hall, 2003.
[36]M. Weissbluth, “Atoms and Molecules,” Academic Press, 1978.
[37]D. R. Hamann, M. Schlüter, C. Chiang,“Norm-conserving pseudopotentials,” Phys. Rev. Lett. 43(20), 1494–1497, 1979.
[38]P. E. Blöchl,“Projector augmented-wave method,” Phys. Rev. B 50(24), 17953, 1994.
[39]R. P. Feynman,“Forces in molecules,” Phys. Rev. 56(4), 340, 1939.
[40]M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, J. D. Joannopoulos,“Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients,” Reviews of Modern Physics, 64(4), 1045–1097, 1992.
[41]X. L. Qi, S. C. Zhang,“The quantum spin Hall effect and topological insulators,” Phys. Today 63, 1, 33, 2010.
[42]C. L. Kane,“Condensed matter: An insulator with a twist,” Nature Physics 4, 348-349, 2008.
[43]L. Fu, C. L. Kane,“Topological insulators with inversion symmetry,” Phys. Rev. B 76(4), 2007.
[44]F. Bloch,“About the quantum mechanics of electrons in crystal lattices,” Z. Phys. 52, 555, 1929.
[45]L. Fu, C. L. Kane,“Time reversal polarization and a Z2 adiabatic spin pump,” Phys. Rev. B 74(19), 2006.
[46]G. Kresse, J. Furthmüller,“Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54(16), 11169, 1996.
[47]H. J. Monkhorst, J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B 13, 5188, 1976.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code