Responsive image
博碩士論文 etd-0528116-112016 詳細資訊
Title page for etd-0528116-112016
論文名稱
Title
乳化法製作聚己內酯微球於生物應用
The preparation of micro-sphere polycaprolactone for bio-application by emulsion process
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-06
繳交日期
Date of Submission
2016-06-28
關鍵字
Keywords
乳化法、藥物混合、PCL微球、均勻設計實驗法、生物實驗
Drug mixing, Emulsion process, PCL microspheres, Biological experiments, Uniform design experiment method
統計
Statistics
本論文已被瀏覽 5731 次,被下載 0
The thesis/dissertation has been browsed 5731 times, has been downloaded 0 times.
中文摘要
本研究主要利用乳化法 (Emulsion process) 的優化方式,透過具有良好生物相容以及混溶性;亦具有較低之轉移溫度 (Transition temperature) 以及生物可降解 (Biodegradable) 特性之高分子材料-聚己內酯 (Polycaprolactone, PCL) ,製備出粒徑均勻化之功能性微球,使得於生物體上其分子流動以及藥物的滲透性較佳,適合當作藥物製備之載體。研究中利用進給幫浦將PCL溶液以等速率方式低落至聚乙烯醇 (Polyvinylalcohol, PVA) 水溶液中;於PVA水溶液中投入磁石並放置於數位式電磁加熱攪拌器上,使得磁石的攪拌速度能精準得控制,使得有機溶劑能夠從PCL中順利被析出,進而獲得PCL微球。因此本研究將以不同的溶液特性 (PCL濃度及PVA濃度)及不同的操作條件 (磁石轉速、液滴滴落距離、進料的速率),以均勻設計實驗法 (Uniform design experimentation) 來探討於不同參數變化下,對於乳化法製備欲載藥微球的粒徑均勻性,最後透過老鼠割傷之敷料實驗獲得微球的載藥能力。研究結果顯示PCL溶液在濃度18.18 wt%、PVA濃度13.02 wt%、溶液攪拌速率690 rpm、針與收集距離16.33 mm及進料速率0.5 ml/hr的參數,可獲得均勻度達87.9 %之PCL微球,其粒徑範圍約10~20 μm。並將所得之最佳粒徑均勻性之PCL微球搭載F101消炎藥物和胜肽 (Peptide) ,進行老鼠割傷之敷料實驗,由實驗結果得知,於相同面積大小傷口下,以曲線下面積 (Area under curve, AUC) 方式觀察,可獲得載入F101消炎藥物之PCL微球,為此次老鼠割傷之敷料實驗之最佳組數,其無因次之AUC為65.25。
Abstract
This study focuses on utilizing an emulsion process optimization through a good biocompatibility and compatibility as well as low transition temperature and biodegradable characteristics polymer – PCL (Polycaprolactone) to manufacture the functional microspheres of uniform size. That shows it has better molecular mobility and drug permeability in vivo that suitable as drug carriers. In this study, by employing the infusion pump dropwise the PCL solution to an aqueous solution of PVA (Polyvinylalcohol) with heating magnet blender that can control precisely the magnet stirring speed, the organic solvent is extracted from the PCL to form solid microspheres. The different solution properties (PCL and PVA concentration) and different operating conditions were investigated (magnet rotational speed, distance of drip, and pump feed rate) by employing the uniform experiment design method to analyze uniformity of drug-loaded microspheres under different parameters. Through the mouse wound dressing experiments, the microspheres drug-loaded ability was characterized. The drug-loaded PCL microspheres with 10 ~ 20 μm diameter and 87.9 % uniformity are produced from uniform experiment design method under the best optimized PCL parameters: 18.18 wt% of concentration, 13.02 wt% of PVA aqueous solution, 690 rpm of rotational speed, 16.33 mm of distance of dripping, 0.5 ml/hr of pump feed rate. We use the optimum microspheres to drug-loaded F101 and Peptide for mouse wound dressing experiments. From the results, in the same wound area size, the AUC (Area under curve) shows that the F101 drug-loaded microspheres were the best experimental group where AUC gets 65.25.
目次 Table of Contents
第一章 緒論 1
1.1前言 1
1.2研究背景與動機 1
1.3研究目的 2
1.4本文架構 3
第二章 文獻回顧 4
2.1高分子材料-聚己內酯 (PCL) 4
2.2高分子微球製備方式 6
2.3載藥型高分子材料的應用 8
第三章 研究方法與步驟 10
3.1研究之實驗流程架構 10
3.2實驗藥品 11
3.3溶液配置 12
3.4實驗流程 14
3.5均勻設計實驗法 15
3.5.1均勻設計表 16
3.5.2均勻實驗程序 18
3.5.3均勻設計實驗結果分析 18
3.5.4克利金模型插植法 (Kriging method) 19
3.5.5 PCL微球均勻設計實驗法設計 20
3.5.6 PCL微球粒徑最佳化分析 22
3.6 PCL微球之老鼠傷口實驗 23
3.6.1 PCL微球之藥物載入流程 23
3.6.2生物實驗設計與傷口敷藥方式 24
3.6.3傷口觀察、評估及分析 25
3.7實驗儀器介紹 27
3.7.1流變儀 (Anton paar, MCR 301) 27
3.7.2接觸角量測分析儀 28
3.7.3鍍金機 29
3.7.4掃描式電子顯微鏡 (Scanning electron microscope, SEM) 30
第四章 實驗結果與討論 31
4.1均勻設計實驗法分析 31
4.1.1均勻設計實驗法分析之PCL微球粒徑百分比 31
4.1.2 PCL微球粒徑分佈最高百分比之Kriging模型建立 39
4.1.3均勻設計實驗法-線性迴歸 40
4.1.4 Kriging反應曲 41
4.1.5乳化法PCL微球製程參數最佳化分析 44
4.1.6乳化法PCL微球之最佳化參數製程 45
4.1.7乳化法PCL微球之最佳化參數製程驗證 45
4.1.8最佳化參數之乳化法PCL微球溶液特性分析 46
4.2老鼠傷口實驗結果分析 47
4.2.1實驗結果總比較 53
第五章 結論與未來展望 55
參考文獻 57
參考文獻 References
[1] 林雅婷, "奈米國家型科技計畫生醫領域研發成果,"台灣奈米會刊電子報,奈米技術, pp. 1-7, 2014.
[2] D. K. Han, K. D. Park, S. Y. Jeong, Y. H. Kim, U. Y. Kim, and B. G. Min, "In-Vivo Biostability and Calcification-Resistance of Surface-Modified Pu-Peo-So3," Journal of Biomedical Materials Research, vol. 27, pp. 1063-1073, 1993.
[3] 黃世偉, "高分子材料與醫療器材, " 科學發展,pp. 14-19, 2010
[4] 潘勁屹, "聚己內酯表面活化與表面奈米化對細胞生長之研究," 碩士論文,化學工程系, 國立雲林科技大學, 2004.
[5] 蔡佩琳, "電紡絲聚己內酯多元醇(PCL)纖維支架中纖維特性對細胞貼附與增生影響之研究, " 碩士論文, 工程科技研究所, 私立萬能科技大學, 2010.
[6] 王基信, "以電氣紡絲法製備PLA/PCL小管徑人工血管支架之性質及其細胞生長研究, " 碩士論文, 機械工程系, 國立交通大學, 2012.
[7] F. J. v. Natta, J. W. Hill, and W. H. Carothers, "Studies of Polymerization and Ring Formation. XXIII.1ε-Caprolactone and its Polymers," Journal of the American Chemical Society, vol. 56, pp. 455-457, 1934.
[8] M. A. Woodruff and D. W. Hutmacher, "The return of a forgotten polymer—Polycaprolactone in the 21st century," Progress in Polymer Science, vol. 35, pp.1217-1256, 2010.
[9] Perrin D. A., "New York : Harwood Academic Publishers," Handbook of biodegradable plastic., 1997.
[10] Y. Ikada and H. Tsuji, "Biodegradable polyesters for medical and ecological applications," Macromolecular Rapid Communications, vol. 21, pp. 117-132, 2000.
[11] C. M. Agrawal and R. B. Ray, "Biodegradable polymeric scaffolds for musculoskeletal tissue engineering," Journal of Biomedical Materials Research, vol. 55, pp. 141-150, 2001.
[12] R. Chandra and R. Rustga, "Biodegradable polymers," Progress in Polymer Science, vol. 23, pp. 1273-1335, 1998.
[13] M. Okada, "Chemical syntheses of biodegradable polymers," Progress in Polymer Science, vol. 27, pp. 87-133, 2002.
[14] L. S. Nair and C. T. Laurencin, "Biodegradable polymers as biomaterials," Progress in Polymer Science, vol. 32, pp. 762-798, 2007.
[15] T. Elzein, M. Nasser-Eddine, C. Delaite, S. Bistac, and P. Dumas, "FTIR study of polycaprolactone chain organization at interfaces," J Colloid Interface Sci, vol. 273, pp. 381-7, 2004.
[16] Y. B. Zhu, C. Y. Gao, and J. C. Shen, "Surface modification of polycaprolactone with poly(methacrylic acid) and gelatin covalent immobilization for promoting its cytocompatibility," Biomaterials, vol. 23, pp. 4889-4895, 2002.
[17] C. Choong, J. T. Triffitt, and Z. F. Cui, "Polycaprolactone scaffolds for bone tissue engineering - Effects of a calcium phosphate coating layer on osteogenic cells," Food and Bioproducts Processing, vol. 82, pp. 117-125, 2004.
[18] J. Venugopal and S. Ramakrishna, "Biocompatible nanofiber matrices for the engineering of a dermal substitute for skin regeneration," Tissue Engineering, vol. 11, pp. 847-854, 2005.
[19] 鄭義忠, 王唯帆, 李偉雄, 孫長春, 胡文華, "影響次微米高分子微球製備因素之探討," 中正嶺學報,. 第三十四卷 第一期, 2005.
[20] G. Odian, "Principles of Polymerization," NewYork, pp. 335-353, 1991.
[21] K. E. J, Barrett, "Dispersion Polymerization in Encyclopedia of Polymer Science and Engineering," Wiley, Chichester,UK 1975.
[22] 郭育丞, "快速合成均一粒徑功能性次微米球及其應用," 博士論文, 化學工程與材料工程學系, 國立中央大學, 2013.
[23] Mark HF, Bikales NM, Overberger CG, Menges G, Kroschwitz JI, "Encyclopedia of Polymer Science and Engineering, 2nded," New York: John Wiley and Sons, pp. 719-23, 1985.
[24] T. Matsumoto and A. Ochi, "Polymerization of Styrene in Aqueous Solution," Kobunshi Kagaku, vol. 22, pp. 481-487, 1965.
[25] K. P. Lok and C. K. Ober, "Particle-Size Control in Dispersion Polymerization of Polystyrene," Canadian Journal of Chemistry-Revue Canadienne De Chimie, vol. 63, pp. 209-216, 1985.
[26] A. Luciani, V. Coccoli, S. Orsi, L. Ambrosio, and P. A. Netti, "PCL microspheres based functional scaffolds by bottom-up approach with predefined microstructural properties and release profiles," Biomaterials, vol. 29, pp. 4800-4807, 2008.
[27] https://www.ntuh.gov.tw/CMIO/medicaltreat/SitePages/SIRT.aspx
[28] J. J. Kim and K. Park, "Modulated insulin delivery from glucose-sensitive hydrogel dosage forms," Journal of Controlled Release, vol. 77, pp. 39-47, 2001.
[29] J. S. Rodrigues, N. S. Santos-Magalhaes, L. C. B. B. Coelho, P. Couvreur, G. Ponchel, and R. Gref, "Novel core (polyester)-shell(polysaccharide) nanoparticles: protein loading and surface modification with lectins," Journal of Controlled Release, vol. 92, pp. 103-112, 2003.
[30] D. Chandrasekar, R. Sistla, F. J. Ahmad, R. K. Khar, and P. V. Diwan, "The development of folate-PAMAM dendrimer conjugates for targeted delivery of anti-arthritic drugs and their pharmacokinetics and biodistribution in arthritic rats," Biomaterials, vol. 28, pp. 504-12, 2007.
[31] S. Barbault-Foucher, R. Gref, P. Russo, J. Guechot, and A. Bochot, "Design of poly-ε-caprolactone nanospheres coated with bioadhesive hyaluronic acid for ocular delivery," Journal of Controlled Release, vol. 83, pp. 365-375, 2002.
[32] 林育如, "田口及均勻實驗法應用於多元醇合成奈米銀分析," 碩士論文, 機械與機電工程系, 國立中山大學, 2015.
[33] 王柏升, "奈米銀線應用聚甲基丙烯酸甲酯複合材料之機械性質及抗菌分析," 碩士論文, 機械與機電工程系, 國立中山大學, 2015.
[34] 蔡孟儒, "應用均勻實驗設計與克利金反應曲面於人工牙根最佳化設計," 碩士論文, 機械與自動化工程系, 國立高雄第一科技大學, 2012.
[35] 曾昭鈞, 均勻設計及其應用:工要學類;中醫學類專用. 北京: 中國醫藥科
技出版社, 2005.
[36] 林晉禾, "應用均勻實驗設計與克利金插值法於自行車車架之最佳化分析," 碩士論文, 機械與自動化工程系, 國立高雄第一科技大學, 2012.
[37] F. Y. Wang, K.T, "A note on uniform distribution and experimental design," Kexue Tongbao, vol. 26, pp. 485-489, 1981.
[38] 王紹宇, "晶圓級晶片尺寸封裝之介電層互連可靠度強化," 碩士論文, 機械與機電工程系, 國立中山大學, 2015.
[39] K.-T. Fang and D. K. J. Lin, "Ch. 4. Uniform experimental designs and their applications in industry," R. Khattree and C.R. Rao,eds., Handbook of statistics, vol. 22, pp. 131-170, 2003.
[40] 方開泰, 均勻設計與均勻設計表. 北京: 科學出版社, 1994
[41] D. G. Krige, "A statistical approack to some mine valuation and allied problems on the witwatersrand, " Master’s thesis, University of Witatersrand, 1951.
[42] J. Sacks et al., "Design and analysis of computer experiments, " Statistical Science, vol. 4, no. 4, pp. 409-439, 1989.
[43] L. Etman, "The method of sacks, Design and analysis of computer experiments, " tech. rep., Eindhoven University of Technology, 1994.
[44] C. H. Liu, and K. Y. Chan, "Reliability-base design of a pressure tank under random and stochastic environments," ASMS International Design Engineering Technical Conference, 2008.
[45] S. Sakata, F. Ashida, and M. Zako, "Eigenfrequency optimization of stiffened plate using kriging estimation," Computational Mechanics, vol. 31, no. 5, pp. 409-418, 2003.
[46] 鄭永長, 蔡孟儒, 江卓培, 李政鋼, "以均勻實驗設計與有限元素法求解人工牙根之最佳設計, " 中國機械工程學會第二十九屆全國學術研討會, 2012.
[47] Soren N. Lophaven, Hans Bruun Nielsen, Jacob Sondergaard, “A MATLAB kriging toolbox DACE,” Report IMM-TR-2002-12, Informatics and Mathematical Modelling, DTU, 2002.
[48] T. Kuroda, T. Harada, H. Tsutsumi, and M. Kobayashi, "Hypernatremia deepens the demarcating borderline of leukocytic infiltration in the burn wound," Burns, vol. 23, pp. 432-7, 1997.
[49] Jian Z. Baoyong L, Denglong C, Min L., "Evaluation of a new type of wound dressing made from recombinant spider silk protein using rat models," Burns, pp. 891-6, 2010.
[50] 陳朝澄, "ACCHACHITIN P 1 0對於寵物外傷及燙傷之傷口癒合作用," 碩士論文, 生物醫學材料研究所, 臺北醫學大學, 2005.
[51] M. H. Huang and M. C. Yang, "Evaluation of glucan/poly(vinyl alcohol) blend wound dressing using rat models," Int J Pharm, vol. 346, pp. 38-46, 2008.
[52] G. C. Gurtner, S. Werner, Y. Barrandon, and M. T. Longaker, "Wound repair and regeneration," Nature, vol. 453, pp. 314-21, 2008.
[53] A. Saito, H. Miyazaki, T. Fujie, S. Ohtsubo, M. Kinoshita, D. Saitoh, et al., "Therapeutic efficacy of an antibiotic-loaded nanosheet in a murine burn-wound infection model," Acta Biomater, vol. 8, pp. 2932-40, 2012.
[54] 吳信誼, 陳俊宏. 黃世英, 林源泉, 溫志宏, "探討黑玉生肌散對於燒燙傷之治療作用," 台灣中醫醫學雜誌,第四期第九卷, 2010
[55] H. M. Wang, Y. T. Chou, Z. H. Wen, C. Z. Wang, C. H. Chen, and M. L. Ho, "Novel biodegradable porous scaffold applied to skin regeneration," PLoS One, vol. 8, p. e56330, 2013.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.23.123
論文開放下載的時間是 校外不公開

Your IP address is 3.145.23.123
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code