Responsive image
博碩士論文 etd-0528117-161753 詳細資訊
Title page for etd-0528117-161753
論文名稱
Title
探討脫氫表雄酮對卵巢反應不良者之卵丘細胞細胞凋亡和粒腺體功能之影響
Effect of dehydroepiandrosterone on apoptosis and mitochondrial function of cumulus cells in poor ovarian responders
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
124
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-06-23
繳交日期
Date of Submission
2017-06-28
關鍵字
Keywords
脫氫表雄酮、卵丘細胞、粒線體、細胞凋亡、卵巢反應不良者
apoptosis, dehydroepiandrosterone, mitochondria, cumulus cells, poor ovarian responders
統計
Statistics
本論文已被瀏覽 5676 次,被下載 1850
The thesis/dissertation has been browsed 5676 times, has been downloaded 1850 times.
中文摘要
卵巢反應不良患者一直以來都是人工生殖技術的一大挑戰,過去的研究指出,補充脫氫表雄酮可能對於卵巢反應不良患者之試管嬰兒預後有助益,不過,確切的作用機轉尚不清楚。本研究旨在探討脫氫表雄酮對於卵巢反應不良患者在臨床上的助益及其對卵丘細胞細胞凋亡及粒線體功能的影響,並以顆粒細胞株進一步驗證。本研究共納入131位準備接受試管嬰兒療程的不孕婦女,其中的59位為正常卵巢反應者,其餘的72位為卵巢反應不良患者;卵巢反應不良患者再分成進入試管嬰兒療程前有補充和沒有補充脫氫表雄酮二組。比較三組試管嬰兒的預後及收集三組受試者之卵丘細胞進行研究,探討卵丘細胞中細胞凋亡相關基因的表現、分析細胞凋亡狀況、粒線體脫氫酶活性、粒線體質量及粒線體功能相關TFAM基因的表現。另外,並以顆粒細胞株作為模式進行西方點墨法、免疫螢光標記法、流式細胞儀分析及海馬生物能量測定等實驗進一步提出佐證。臨床結果顯示,和未補充者相較,卵巢反應不良患者補充脫氫表雄酮明顯增加受精率、高品質胚胎數及植入胚胎數,雖然並未具有顯著統計上之差異,但在懷孕率及活產率上皆有增加的趨勢。在卵丘細胞模式研究結果顯示,脫氫表雄酮能降低卵丘細胞DNA之損壞及細胞凋亡,且能增加粒線體質量、粒線體脫氫酶活性及粒線體TFAM基因的表現。顆粒細胞株的研究發現脫氫表雄酮可抑制細胞凋亡、增加粒線體之質量及耗氧量、減少粒線體之膜電位流失及活性氧化物產生。總結而言,本研究結果顯示卵巢反應不良患者補充脫氫表雄酮對試管嬰兒預後具有正面效果,並為脫氫表雄酮之功效可能是藉由改善卵丘細胞粒線體功能及抑制細胞凋亡來達成提供佐證。
Abstract
Poor ovarian responders (PORs) pose a great challenge for in vitro fertilization (IVF). Previous studies have suggested that dehydroepiandrosterone (DHEA) may improve IVF outcomes in PORs; however, the precise mechanisms were unclear. The current study aimed to investigate the clinical benefits of DHEA in PORs and the possible effects of DHEA on cumulus cells (CCs) regarding apoptosis and mitochondrial function. HO23 granulosa cell line was used for further confirmation of DHEA effects. A total of 131 women who underwent IVF treatment participated, including 59 normal ovarian responders (NORs) and 72 PORs. PORs were assigned to receive DHEA pretreatment or not before the IVF cycle. IVF outcomes were compared among the three groups and CCs were obtained after oocyte retrieval in all patients. In the CCs, mRNA expression of apoptosis-related genes and mitochondrial transcription factor A (TFAM) gene, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, mitochondrial dehydrogenase activity and mitochondrial mass were measured. Additionally, we performed immunoblotting, immunofluorescence labeling, flow cytometry and seahorse analyzer in HO23 cells to verify the effects of DHEA. The results showed that PORs with DHEA supplementation produces a great number of top-quality embryos at day 3 and increased the number of transferred embryos and fertilization rate compared with those without DHEA supplementation. Moreover, PORs with DHEA pretreatment displayed a tendency of higher clinical pregnancy rate, ongoing pregnancy rate and live birth rate than PORs without DHEA pretreatment. In the CCs, supplementation with DHEA in PORs decreased DNA damage and apoptosis while enhancing the mitochondrial mass, mitochondrial dehydrogenase activity and TFAM expression. In the HO23 cells, treatment with DHEA improved mitochondrial capacity to defend against apoptosis through the elimination of mitochondrial ROS, increasing mitochondrial biogenesis levels, and the enhancement of mitochondrial mass. In conclusion, our results showed that the benefits of DHEA supplementation on IVF outcomes in PORs were significant, and the effects may be partially mediated by improving mitochondrial function and reducing apoptosis in CCs.
目次 Table of Contents
前 言…………………………………………………………….... 1
卵巢反應不良患者…………………………………………....... 2
脫氫表雄酮(dehydroepiandrosterone, DHEA)…………… 5
卵丘細胞或顆粒細胞………………………………………….. 10
細胞凋亡……………………………………………………….. 13
粒腺體………………………………………………………….. 16
研究動機與假設……………………………………………….. 19
材 料 與 方 法………………………………………………….. 20
研究設計與分組……………………………………………….. 21
試管嬰兒療程………………………………………………….. 23
卵丘細胞之分級與收集……………………………………….. 25
總RNA萃取及即時定量聚合酶連鎖反應…………………..... 26
細胞凋亡分析 (TUNEL assay) …………………................. 27
粒線體脫氫酶活性分析………………………….................. 27
粒線體質量測量………………………………….................. 27
HO23人類顆粒細胞株之培養與治療………………………... 28
細胞存活分析………………………………………………….. 29
免疫螢光標記法……………………………………………….. 29
粒線體膜電位、活性氧化物、質量之測量………………….. 29
西方墨點法(Western blot)………………………………… 30
粒線體耗氧量之測量………………………………………….. 31
統計方法……………………………………………………….. 32
結 果……………………………………………………………... 33
臨床病人資料與試管嬰兒預後……………………………….. 34
脫氫表雄酮對於卵子-卵丘細胞複合體之影響…....………… 37
脫氫表雄酮對於卵丘細胞細胞凋亡之影響………………….. 38
脫氫表雄酮對於卵丘細胞粒線體之影響…………………….. 39
脫氫表雄酮對於HO23顆粒細胞株細胞凋亡之影響………... 40
脫氫表雄酮對於HO23顆粒細胞株粒線體功能之影響……... 43
討 論……………………………………………………………... 45
結論及未來研究方向……………………………………........... 52
參考文獻…………………………………………………………. 53
附表………………………………………………………………. 75
附圖………………………………………………………………. 80
縮寫表…………………………………………………………... 103
附錄……………………………………………………………... 105
參考文獻 References
1. Ulug U, Ben-Shlomo I, Turan E, Erden HF, Akman MA, Bahceci M. Conception rates following assisted reproduction in poor responder patients: a retrospective study in 300 consecutive cycles. Reproductive biomedicine online 2003;6:439-43.
2. Saldeen P, Kallen K, Sundstrom P. The probability of successful IVF outcome after poor ovarian response. Acta obstetricia et gynecologica Scandinavica 2007;86:457-61.
3. Garcia JE, Jones GS, Acosta AA, Wright G, Jr. Human menopausal gonadotropin/human chorionic gonadotropin follicular maturation for oocyte aspiration: phase II, 1981. Fertility and sterility 1983;39:174-9.
4. Surrey ES, Schoolcraft WB. Evaluating strategies for improving ovarian response of the poor responder undergoing assisted reproductive techniques. Fertility and sterility 2000;73:667-76.
5. Kamble L, Gudi A, Shah A, Homburg R. Poor responders to controlled ovarian hyperstimulation for in vitro fertilisation (IVF). Human fertility (Cambridge, England) 2011;14:230-45.
6. Polyzos NP, Devroey P. A systematic review of randomized trials for the treatment of poor ovarian responders: is there any light at the end of the tunnel? Fertility and sterility 2011;96:1058-61.e7.
7. Loutradis D, Vomvolaki E, Drakakis P. Poor responder protocols for in-vitro fertilization: options and results. Current opinion in obstetrics & gynecology 2008;20:374-8.
8. Tarlatzis BC, Zepiridis L, Grimbizis G, Bontis J. Clinical management of low ovarian response to stimulation for IVF: a systematic review. Human reproduction update 2003;9:61-76.
9. Ferraretti AP, La Marca A, Fauser BC, Tarlatzis B, Nargund G, Gianaroli L. ESHRE consensus on the definition of 'poor response' to ovarian stimulation for in vitro fertilization: the Bologna criteria. Human reproduction 2011;26:1616-24.
10. Yang S, Chen X, Zhen X, et al. The Prognosis of IVF in Poor Responders Depending on the Bologna Criteria: A Large Sample Retrospective Study from China. BioMed research international 2015;2015:296173.
11. Younis JS, Ben-Ami M, Ben-Shlomo I. The Bologna criteria for poor ovarian response: a contemporary critical appraisal. Journal of ovarian research 2015;8:76.
12. Busnelli A, Papaleo E, Del Prato D, et al. A retrospective evaluation of prognosis and cost-effectiveness of IVF in poor responders according to the Bologna criteria. Human reproduction 2015;30:315-22.
13. La Marca A, Grisendi V, Giulini S, et al. Live birth rates in the different combinations of the Bologna criteria poor ovarian responders: a validation study. Journal of assisted reproduction and genetics 2015;32:931-7.
14. Alviggi C, Andersen CY, Buehler K, et al. A new more detailed stratification of low responders to ovarian stimulation: from a poor ovarian response to a low prognosis concept. Fertility and sterility 2016;105:1452-3.
15. Polyzos NP, Nwoye M, Corona R, et al. Live birth rates in Bologna poor responders treated with ovarian stimulation for IVF/ICSI. Reproductive biomedicine online 2014;28:469-74.
16. Pandian Z, McTavish AR, Aucott L, Hamilton MP, Bhattacharya S. Interventions for 'poor responders' to controlled ovarian hyper stimulation (COH) in in-vitro fertilisation (IVF). The Cochrane database of systematic reviews 2010:Cd004379.
17. Hu L, Bu Z, Guo Y, Su Y, Zhai J, Sun Y. Comparison of different ovarian hyperstimulation protocols efficacy in poor ovarian responders according to the Bologna criteria. International journal of clinical and experimental medicine 2014;7:1128-34.
18. Song D, Shi Y, Zhong Y, Meng Q, Hou S, Li H. Efficiency of mild ovarian stimulation with clomiphene on poor ovarian responders during IVFICSI procedures: a meta-analysis. European journal of obstetrics, gynecology, and reproductive biology 2016;204:36-43.
19. Li Y, Yang W, Chen X, Li L, Zhang Q, Yang D. Comparison between follicular stimulation and luteal stimulation protocols with clomiphene and HMG in women with poor ovarian response. Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology 2016;32:74-7.
20. Kuang Y, Chen Q, Hong Q, et al. Double stimulations during the follicular and luteal phases of poor responders in IVF/ICSI programmes (Shanghai protocol). Reproductive biomedicine online 2014;29:684-91.
21. Luo S, Li S, Li X, Qin L, Jin S. Effect of pretreatment with transdermal testosterone on poor ovarian responders undergoing IVF/ICSI: A meta-analysis. Experimental and therapeutic medicine 2014;8:187-94.
22. Bosdou JK, Venetis CA, Dafopoulos K, et al. Transdermal testosterone pretreatment in poor responders undergoing ICSI: a randomized clinical trial. Human reproduction 2016;31:977-85.
23. Li J, Yuan H, Chen Y, Wu H, Wu H, Li L. A meta-analysis of dehydroepiandrosterone supplementation among women with diminished ovarian reserve undergoing in vitro fertilization or intracytoplasmic sperm injection. International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics 2015;131:240-5.
24. Nagels HE, Rishworth JR, Siristatidis CS, Kroon B. Androgens (dehydroepiandrosterone or testosterone) for women undergoing assisted reproduction. The Cochrane database of systematic reviews 2015;11:Cd009749.
25. Zhang M, Niu W, Wang Y, et al. Dehydroepiandrosterone treatment in women with poor ovarian response undergoing IVF or ICSI: a systematic review and meta-analysis. Journal of assisted reproduction and genetics 2016;33:981-91.
26. Bosch E, Labarta E, Kolibianakis E, Rosen M, Meldrum D. Regimen of ovarian stimulation affects oocyte and therefore embryo quality. Fertility and sterility 2016;105:560-70.
27. Duffy JM, Ahmad G, Mohiyiddeen L, Nardo LG, Watson A. Growth hormone for in vitro fertilization. The Cochrane database of systematic reviews 2010:CD000099.
28. Lehert P, Kolibianakis EM, Venetis CA, et al. Recombinant human follicle-stimulating hormone (r-hFSH) plus recombinant luteinizing hormone versus r-hFSH alone for ovarian stimulation during assisted reproductive technology: systematic review and meta-analysis. Reproductive biology and endocrinology : RB&E 2014;12:17.
29. Labrie F. All sex steroids are made intracellularly in peripheral tissues by the mechanisms of intracrinology after menopause. The Journal of steroid biochemistry and molecular biology 2014.
30. Labrie F, Martel C, Belanger A, Pelletier G. Androgens in women are essentially made from DHEA in each peripheral tissue according to intracrinology. The Journal of steroid biochemistry and molecular biology 2017.
31. Kroboth PD, Salek FS, Pittenger AL, Fabian TJ, Frye RF. DHEA and DHEA-S: a review. Journal of clinical pharmacology 1999;39:327-48.
32. Panjari M, Davis SR. DHEA therapy for women: effect on sexual function and wellbeing. Human reproduction update 2007;13:239-48.
33. Labrie F, Luu-The V, Belanger A, et al. Is dehydroepiandrosterone a hormone? The Journal of endocrinology 2005;187:169-96.
34. Prizant H, Gleicher N, Sen A. Androgen actions in the ovary: balance is key. Journal of Endocrinology 2014;222:R141-R51.
35. Walters KA, Allan CM, Handelsman DJ. Androgen actions and the ovary. Biol Reprod 2008;78:380-9.
36. Alexaki VI, Charalampopoulos I, Panayotopoulou M, Kampa M, Gravanis A, Castanas E. Dehydroepiandrosterone protects human keratinocytes against apoptosis through membrane binding sites. Experimental cell research 2009;315:2275-83.
37. Liu D, Si H, Reynolds KA, Zhen W, Jia Z, Dillon JS. Dehydroepiandrosterone protects vascular endothelial cells against apoptosis through a Galphai protein-dependent activation of phosphatidylinositol 3-kinase/Akt and regulation of antiapoptotic Bcl-2 expression. Endocrinology 2007;148:3068-76.
38. Charalampopoulos I, Tsatsanis C, Dermitzaki E, et al. Dehydroepiandrosterone and allopregnanolone protect sympathoadrenal medulla cells against apoptosis via antiapoptotic Bcl-2 proteins. Proc Natl Acad Sci U S A 2004;101:8209-14.
39. Tsui KH, Lin LT, Horng HC, et al. Gene expression of cumulus cells in women with poor ovarian response after dehydroepiandrosterone supplementation. Taiwan J Obstet Gynecol 2014;53:559-65.
40. Labrie F, Archer DF, Koltun W, et al. Efficacy of intravaginal dehydroepiandrosterone (DHEA) on moderate to severe dyspareunia and vaginal dryness, symptoms of vulvovaginal atrophy, and of the genitourinary syndrome of menopause. Menopause 2016;23:243-56.
41. Archer DF. Dehydroepiandrosterone intra vaginal administration for the management of postmenopausal vulvovaginal atrophy. The Journal of steroid biochemistry and molecular biology 2015;145:139-43.
42. Casson PR, Lindsay MS, Pisarska MD, Carson SA, Buster JE. Dehydroepiandrosterone supplementation augments ovarian stimulation in poor responders: a case series. Human reproduction 2000;15:2129-32.
43. Barad DH, Gleicher N. Increased oocyte production after treatment with dehydroepiandrosterone. Fertility and sterility 2005;84:756.
44. Lin LT, Tsui KH, Wang PH. Clinical application of dehydroepiandrosterone in reproduction: A review of the evidence. Journal of the Chinese Medical Association : JCMA 2015;78:446-53.
45. Zhang HH, Xu PY, Wu J, et al. Dehydroepiandrosterone improves follicular fluid bone morphogenetic protein-15 and accumulated embryo score of infertility patients with diminished ovarian reserve undergoing in vitro fertilization: a randomized controlled trial. Journal of ovarian research 2014;7:93.
46. Xu B, Li Z, Yue J, et al. Effect of dehydroepiandrosterone administration in patients with poor ovarian response according to the Bologna criteria. PloS one 2014;9:e99858.
47. Vlahos N, Papalouka M, Triantafyllidou O, et al. Dehydroepiandrosterone administration before IVF in poor responders: a prospective cohort study. Reproductive biomedicine online 2015;30:191-6.
48. Tsui KH, Lin LT, Chang R, Huang BS, Cheng JT, Wang PH. Effects of dehydroepiandrosterone supplementation on women with poor ovarian response: A preliminary report and review. Taiwan J Obstet Gynecol 2015;54:131-6.
49. Mamas L, Mamas E. Premature ovarian failure and dehydroepiandrosterone. Fertility and sterility 2009;91:644-6.
50. Yeung TW, Li RH, Lee VC, Ho PC, Ng EH. A randomized double-blinded placebo-controlled trial on the effect of dehydroepiandrosterone for 16 weeks on ovarian response markers in women with primary ovarian insufficiency. The Journal of clinical endocrinology and metabolism 2013;98:380-8.
51. Tartagni M, Cicinelli MV, Baldini D, et al. Dehydroepiandrosterone decreases the age-related decline of the in vitro fertilization outcome in women younger than 40 years old. Reproductive biology and endocrinology : RB&E 2015;13:18.
52. Yeung T, Chai J, Li R, Lee V, Ho PC, Ng E. A double-blind randomised controlled trial on the effect of dehydroepiandrosterone on ovarian reserve markers, ovarian response and number of oocytes in anticipated normal ovarian responders. BJOG 2015.
53. Gleicher N, Weghofer A, Barad DH. Dehydroepiandrosterone (DHEA) reduces embryo aneuploidy: direct evidence from preimplantation genetic screening (PGS). Reproductive biology and endocrinology : RB&E 2010;8:140.
54. Yilmaz N, Uygur D, Inal H, Gorkem U, Cicek N, Mollamahmutoglu L. Dehydroepiandrosterone supplementation improves predictive markers for diminished ovarian reserve: serum AMH, inhibin B and antral follicle count. European journal of obstetrics, gynecology, and reproductive biology 2013;169:257-60.
55. Key TJ, Appleby PN, Reeves GK, et al. Sex hormones and risk of breast cancer in premenopausal women: a collaborative reanalysis of individual participant data from seven prospective studies. The Lancet. Oncology 2013;14:1009-19.
56. Folkerd E, Dowsett M. Sex hormones and breast cancer risk and prognosis. Breast (Edinburgh, Scotland) 2013;22 Suppl 2:S38-43.
57. Brown SB, Hankinson SE. Endogenous estrogens and the risk of breast, endometrial, and ovarian cancers. Steroids 2015;99:8-10.
58. Fragouli E, Lalioti MD, Wells D. The transcriptome of follicular cells: biological insights and clinical implications for the treatment of infertility. Human reproduction update 2014;20:1-11.
59. Uyar A, Torrealday S, Seli E. Cumulus and granulosa cell markers of oocyte and embryo quality. Fertility and sterility 2013;99:979-97.
60. Zuccotti M, Merico V, Cecconi S, Redi CA, Garagna S. What does it take to make a developmentally competent mammalian egg? Human reproduction update 2011;17:525-40.
61. Feuerstein P, Cadoret V, Dalbies-Tran R, Guerif F, Bidault R, Royere D. Gene expression in human cumulus cells: one approach to oocyte competence. Human reproduction 2007;22:3069-77.
62. Hasegawa J, Yanaihara A, Iwasaki S, Mitsukawa K, Negishi M, Okai T. Reduction of connexin 43 in human cumulus cells yields good embryo competence during ICSI. Journal of assisted reproduction and genetics 2007;24:463-6.
63. Sutton-McDowall ML, Gilchrist RB, Thompson JG. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction 2010;139:685-95.
64. Eppig JJ. Oocyte control of ovarian follicular development and function in mammals. Reproduction 2001;122:829-38.
65. Tanghe S, Van Soom A, Nauwynck H, Coryn M, de Kruif A. Minireview: Functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization. Molecular reproduction and development 2002;61:414-24.
66. Russell DL, Salustri A. Extracellular matrix of the cumulus-oocyte complex. Seminars in reproductive medicine 2006;24:217-27.
67. Barrett SL, Albertini DF. Cumulus cell contact during oocyte maturation in mice regulates meiotic spindle positioning and enhances developmental competence. Journal of assisted reproduction and genetics 2010;27:29-39.
68. Wathlet S, Adriaenssens T, Segers I, et al. Cumulus cell gene expression predicts better cleavage-stage embryo or blastocyst development and pregnancy for ICSI patients. Human reproduction 2011;26:1035-51.
69. Cillo F, Brevini TA, Antonini S, Paffoni A, Ragni G, Gandolfi F. Association between human oocyte developmental competence and expression levels of some cumulus genes. Reproduction 2007;134:645-50.
70. Adriaenssens T, Wathlet S, Segers I, et al. Cumulus cell gene expression is associated with oocyte developmental quality and influenced by patient and treatment characteristics. Human reproduction 2010;25:1259-70.
71. Anderson RA, Sciorio R, Kinnell H, et al. Cumulus gene expression as a predictor of human oocyte fertilisation, embryo development and competence to establish a pregnancy. Reproduction 2009;138:629-37.
72. Fragouli E, Wells D, Iager AE, Kayisli UA, Patrizio P. Alteration of gene expression in human cumulus cells as a potential indicator of oocyte aneuploidy. Human reproduction 2012;27:2559-68.
73. Feuerstein P, Puard V, Chevalier C, et al. Genomic assessment of human cumulus cell marker genes as predictors of oocyte developmental competence: impact of various experimental factors. PloS one 2012;7:e40449.
74. Li SH, Lin MH, Hwu YM, et al. Correlation of cumulus gene expression of GJA1, PRSS35, PTX3, and SERPINE2 with oocyte maturation, fertilization, and embryo development. Reproductive biology and endocrinology : RB&E 2015;13:93.
75. McKenzie LJ, Pangas SA, Carson SA, et al. Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF. Human reproduction 2004;19:2869-74.
76. Assou S, Haouzi D, Mahmoud K, et al. A non-invasive test for assessing embryo potential by gene expression profiles of human cumulus cells: a proof of concept study. Molecular human reproduction 2008;14:711-9.
77. van Montfoort AP, Geraedts JP, Dumoulin JC, Stassen AP, Evers JL, Ayoubi TA. Differential gene expression in cumulus cells as a prognostic indicator of embryo viability: a microarray analysis. Molecular human reproduction 2008;14:157-68.
78. Gebhardt KM, Feil DK, Dunning KR, Lane M, Russell DL. Human cumulus cell gene expression as a biomarker of pregnancy outcome after single embryo transfer. Fertility and sterility 2011;96:47-52 e2.
79. Iager AE, Kocabas AM, Otu HH, et al. Identification of a novel gene set in human cumulus cells predictive of an oocyte's pregnancy potential. Fertility and sterility 2013;99:745-52 e6.
80. Wathlet S, Adriaenssens T, Segers I, et al. New candidate genes to predict pregnancy outcome in single embryo transfer cycles when using cumulus cell gene expression. Fertility and sterility 2012;98:432-9 e1-4.
81. Wathlet S, Adriaenssens T, Segers I, et al. Pregnancy prediction in single embryo transfer cycles after ICSI using QPCR: validation in oocytes from the same cohort. PloS one 2013;8:e54226.
82. Kordus RJ, LaVoie HA. Granulosa cell biomarkers to predict pregnancy in ART: pieces to solve the puzzle. Reproduction 2017;153:R69-r83.
83. Birkinshaw RW, Czabotar PE. The BCL-2 family of proteins and mitochondrial outer membrane permeabilisation. Seminars in cell & developmental biology 2017.
84. Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nature reviews. Molecular cell biology 2008;9:47-59.
85. Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level. Nature reviews. Molecular cell biology 2008;9:231-41.
86. Xiong S, Mu T, Wang G, Jiang X. Mitochondria-mediated apoptosis in mammals. Protein & cell 2014;5:737-49.
87. Hussein MR. Apoptosis in the ovary: molecular mechanisms. Human reproduction update 2005;11:162-77.
88. Nandedkar TD, Dharma SJ. Expression of bcl(xs) and c-myc in atretic follicles of mouse ovary. Reproductive biomedicine online 2001;3:221-25.
89. Van Nassauw L, Tao L, Harrisson F. Distribution of apoptosis-related proteins in the quail ovary during folliculogenesis: BCL-2, BAX and CPP32. Acta histochemica 1999;101:103-12.
90. Sugino N, Suzuki T, Kashida S, Karube A, Takiguchi S, Kato H. Expression of Bcl-2 and Bax in the human corpus luteum during the menstrual cycle and in early pregnancy: regulation by human chorionic gonadotropin. The Journal of clinical endocrinology and metabolism 2000;85:4379-86.
91. Roy MJ, Vom A, Czabotar PE, Lessene G. Cell death and the mitochondria: therapeutic targeting of the BCL-2 family-driven pathway. British journal of pharmacology 2014;171:1973-87.
92. Collins TJ, Berridge MJ, Lipp P, Bootman MD. Mitochondria are morphologically and functionally heterogeneous within cells. The EMBO journal 2002;21:1616-27.
93. Ramalho-Santos J, Varum S, Amaral S, Mota PC, Sousa AP, Amaral A. Mitochondrial functionality in reproduction: from gonads and gametes to embryos and embryonic stem cells. Human reproduction update 2009;15:553-72.
94. Saki M, Prakash A. DNA damage related crosstalk between the nucleus and mitochondria. Free radical biology & medicine 2016.
95. St John JC, Facucho-Oliveira J, Jiang Y, Kelly R, Salah R. Mitochondrial DNA transmission, replication and inheritance: a journey from the gamete through the embryo and into offspring and embryonic stem cells. Human reproduction update 2010;16:488-509.
96. Li X, Fang P, Yang WY, et al. Mitochondrial ROS, uncoupled from ATP synthesis, determine endothelial activation for both physiological recruitment of patrolling cells and pathological recruitment of inflammatory cells. Canadian journal of physiology and pharmacology 2017;95:247-52.
97. May-Panloup P, Boucret L, Chao de la Barca JM, et al. Ovarian ageing: the role of mitochondria in oocytes and follicles. Human reproduction update 2016;22:725-43.
98. Sun QY, Wu GM, Lai L, et al. Translocation of active mitochondria during pig oocyte maturation, fertilization and early embryo development in vitro. Reproduction 2001;122:155-63.
99. Lynch M, Koskella B, Schaack S. Mutation pressure and the evolution of organelle genomic architecture. Science (New York, N.Y.) 2006;311:1727-30.
100. Jansen RP, de Boer K. The bottleneck: mitochondrial imperatives in oogenesis and ovarian follicular fate. Molecular and cellular endocrinology 1998;145:81-8.
101. Steffann J, Monnot S, Bonnefont JP. mtDNA mutations variously impact mtDNA maintenance throughout the human embryofetal development. Clin Genet 2015;88:416-24.
102. Cummins JM. Mitochondria: potential roles in embryogenesis and nucleocytoplasmic transfer. Human reproduction update 2001;7:217-28.
103. Van Blerkom J. Mitochondrial function in the human oocyte and embryo and their role in developmental competence. Mitochondrion 2011;11:797-813.
104. Ferraretti AP, La Marca A, Fauser BC, et al. ESHRE consensus on the definition of 'poor response' to ovarian stimulation for in vitro fertilization: the Bologna criteria. Human reproduction 2011;26:1616-24.
105. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Human reproduction 2011;26:1270-83.
106. Campbell CT, Kolesar JE, Kaufman BA. Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number. Biochim Biophys Acta 2012;1819:921-9.
107. Yang Y, Sun X, Cui L, et al. Younger poor ovarian response women achieved better pregnancy results in the first three IVF cycles. Reproductive biomedicine online 2016;32:532-7.
108. Wiser A, Gonen O, Ghetler Y, Shavit T, Berkovitz A, Shulman A. Addition of dehydroepiandrosterone (DHEA) for poor-responder patients before and during IVF treatment improves the pregnancy rate: a randomized prospective study. Human reproduction 2010;25:2496-500.
109. Singh N, Zangmo R, Kumar S, et al. A prospective study on role of dehydroepiandrosterone (DHEA) on improving the ovarian reserve markers in infertile patients with poor ovarian reserve. Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology 2013;29:989-92.
110. Sonmezer M, Ozmen B, Cil AP, et al. Dehydroepiandrosterone supplementation improves ovarian response and cycle outcome in poor responders. Reproductive biomedicine online 2009;19:508-13.
111. Zangmo R, Singh N, Kumar S, Vanamail P, Tiwari A. Role of dehydroepiandrosterone in improving oocyte and embryo quality in IVF cycles. Reproductive biomedicine online 2014.
112. Barad D, Brill H, Gleicher N. Update on the use of dehydroepiandrosterone supplementation among women with diminished ovarian function. Journal of assisted reproduction and genetics 2007;24:629-34.
113. Barad D, Gleicher N. Effect of dehydroepiandrosterone on oocyte and embryo yields, embryo grade and cell number in IVF. Human reproduction 2006;21:2845-9.
114. Gleicher N, Barad DH. Dehydroepiandrosterone (DHEA) supplementation in diminished ovarian reserve (DOR). Reproductive biology and endocrinology : RB&E 2011;9:67.
115. Gleicher N, Weghofer A, Barad DH. Improvement in diminished ovarian reserve after dehydroepiandrosterone supplementation. Reproductive biomedicine online 2010;21:360-5.
116. Ding X, Wang D, Li L, Ma H. Dehydroepiandrosterone ameliorates H2O2-induced Leydig cells oxidation damage and apoptosis through inhibition of ROS production and activation of PI3K/Akt pathways. The international journal of biochemistry & cell biology 2016;70:126-39.
117. Host E, Gabrielsen A, Lindenberg S, Smidt-Jensen S. Apoptosis in human cumulus cells in relation to zona pellucida thickness variation, maturation stage, and cleavage of the corresponding oocyte after intracytoplasmic sperm injection. Fertility and sterility 2002;77:511-5.
118. Corn CM, Hauser-Kronberger C, Moser M, Tews G, Ebner T. Predictive value of cumulus cell apoptosis with regard to blastocyst development of corresponding gametes. Fertility and sterility 2005;84:627-33.
119. Diaz-Fontdevila M, Pommer R, Smith R. Cumulus cell apoptosis changes with exposure to spermatozoa and pathologies involved in infertility. Fertility and sterility 2009;91:2061-8.
120. Lee KS, Joo BS, Na YJ, Yoon MS, Choi OH, Kim WW. Cumulus cells apoptosis as an indicator to predict the quality of oocytes and the outcome of IVF-ET. Journal of assisted reproduction and genetics 2001;18:490-8.
121. Bencomo E, Perez R, Arteaga MF, et al. Apoptosis of cultured granulosa-lutein cells is reduced by insulin-like growth factor I and may correlate with embryo fragmentation and pregnancy rate. Fertility and sterility 2006;85:474-80.
122. Patel MA, Katyare SS. Effect of dehydroepiandrosterone (DHEA) treatment on oxidative energy metabolism in rat liver and brain mitochondria. A dose-response study. Clinical biochemistry 2007;40:57-65.
123. Patel MA, Katyare SS. Treatment with dehydroepiandrosterone (DHEA) stimulates oxidative energy metabolism in the cerebral mitochondria. A comparative study of effects in old and young adult rats. Neuroscience letters 2006;402:131-6.
124. Au HK, Yeh TS, Kao SH, Tzeng CR, Hsieh RH. Abnormal mitochondrial structure in human unfertilized oocytes and arrested embryos. Ann N Y Acad Sci 2005;1042:177-85.
125. Hsieh RH, Au HK, Yeh TS, Chang SJ, Cheng YF, Tzeng CR. Decreased expression of mitochondrial genes in human unfertilized oocytes and arrested embryos. Fertility and sterility 2004;81 Suppl 1:912-8.
126. Santos TA, El Shourbagy S, St John JC. Mitochondrial content reflects oocyte variability and fertilization outcome. Fertility and sterility 2006;85:584-91.
127. Zeng HT, Ren Z, Yeung WS, et al. Low mitochondrial DNA and ATP contents contribute to the absence of birefringent spindle imaged with PolScope in in vitro matured human oocytes. Human reproduction 2007;22:1681-6.
128. Boucret L, Chao de la Barca JM, Moriniere C, et al. Relationship between diminished ovarian reserve and mitochondrial biogenesis in cumulus cells. Human reproduction 2015;30:1653-64.
129. Ogino M, Tsubamoto H, Sakata K, et al. Mitochondrial DNA copy number in cumulus cells is a strong predictor of obtaining good-quality embryos after IVF. Journal of assisted reproduction and genetics 2016;33:367-71.
130. Tsai HD, Hsieh YY, Hsieh JN, et al. Mitochondria DNA deletion and copy numbers of cumulus cells associated with in vitro fertilization outcomes. The Journal of reproductive medicine 2010;55:491-7.
131. Hsieh RH, Tsai NM, Au HK, Chang SJ, Wei YH, Tzeng CR. Multiple rearrangements of mitochondrial DNA in unfertilized human oocytes. Fertility and sterility 2002;77:1012-7.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code