Responsive image
博碩士論文 etd-0528118-084541 詳細資訊
Title page for etd-0528118-084541
論文名稱
Title
使用β-Bungarotoxin的DNA Aptamers作為感測器偵測β-Bungarotoxin、Coralyne及Heparin
The Utility of DNA Aptamers against β-Bungarotoxin as Sensors for Detecting β-Bungarotoxin, Coralyne and Heparin
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
87
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-06-27
繳交日期
Date of Submission
2018-06-28
關鍵字
Keywords
DNA核酸適體、Coralyne、β-Bungarotoxin、肝素、感測器
DNA aptamer, Sensors, Heparin, Coralyne, β-Bungarotoxin
統計
Statistics
本論文已被瀏覽 5668 次,被下載 0
The thesis/dissertation has been browsed 5668 times, has been downloaded 0 times.
中文摘要
Aptamer為單股DNA或RNA片段,能以其形成之特定結構和作用標的物結合,因此可作為偵測結合標的物的Aptasensor,本論文主要探討台灣雨傘節突觸前神經毒素β-Bungarotoxin (β-Bgt)之DNA Aptamers作為生物感測器的應用性。 根據先前文獻報導合成四段β-Bgt aptamers:Bgt1、Bgt2、Bgt3及Bgt4,瓊脂電泳分析顯示β-Bgt可降低四段Aptamers的電泳移動性,此外β-Bgt能使5'端標定Carboxyfluorescein (FAM)及3'端標定4-([4-(dimethylamino)- phenyl]azo)-benzoic acid (Dabcyl)的Aptamers螢光強度下降,顯示β-Bgt能與四段Aptamers結合並改變其結構,由FAM螢光變化分析證實四段 Aptamers中,β-Bgt對Bgt1親和性最高。 另一方面發現Coralyne可明顯降低5'端標定FAM之Bgt1 (FAM-Bgt1)及5'端與3'端分別標定FAM與Dabcyl之Bgt1 (FAM-Bgt1-Dabcyl)的FAM螢光強度,而Palmatine及Berberine僅有些微影響FAM螢光強度,顯示FAM-Bgt1及FAM-Bgt1-Dabcyl可應用於選擇性偵測Coralyne,偵測Coralyne的Limit of detection (LOD)分別為0.021 μM及0.015 μM。 進一步以Coralyne-FAM-Bgt1及Coralyne-FAM-Bgt1-Dabcyl複合物作為感測器以turn-on螢光方式偵測β-Bgt及Heparin,發現β-Bgt及Heparin均可明顯回復Coralyne-FAM-Bgt1及Coralyne-FAM-Bgt1-Dabcyl複合物之FAM螢光,實驗結果顯示偵測β-Bgt的LOD值分別為3.57 nM及2.74 nM,而偵測Heparin的LOD值分別為0.012 μg/ml及0.004 μg/ml,此外偵測血清中的Heparin其LOD值分別為0.027 μg/ml及0.009 μg/ml。 此Coralyne與Bgt1構建的感測系統,針對不同Glycosaminoglycans包括Chondroitin sulfate及Hyaluronic acid僅些許影響,顯示可選擇性偵測Heparin;另一方面,此感測系統雖可有效區分β-Bgt與其他純化蛇毒蛋白,但無法選擇性偵測台灣雨傘節粗蛇毒。 綜合上述結果證實β-Bgt之Aptamers構建之感測器系統可應用於偵測Coralyne及Heparin,但對β-Bgt之偵測無法應用於粗蛇毒之分析。
Abstract
Aptamers are single-stranded DNA or RNA fragments that bind to targeted molecules via folding into specific structure. Thus, aptamers can be employed as aptasensors for detecting targeted molecules. The aim of this study was to investigate the utility of DNA aptamers against Bungarus multicinctus (Taiwan banded krait) presynaptic neurotoxin β-bungarotoxin (β-Bgt) as biosensors. Four β-Bgt aptamers, Bgt1, Bgt2, Bgt3, and Bgt4 were synthesized according to previously published results. Electrophoretic mobility shift assay showed that β-Bgt reduced the electrophoretic mobility of the aptamers. Moreover, β-Bgt reduced fluorescence intensity of the aptamers labeled with 5'-end carboxyfluorescein (FAM) and 3'-end 4-([4-(dimethylamino)-phenyl]azo)-benzoic acid (Dabcyl). These results showed that the folded structure of aptamers changed upon binding with β-Bgt. Measurement of the changes in FAM fluorescence revealed that β-Bgt had the highest binding affinity for Bgt1 among the four aptamers. In contrast to palmatine and berberine, coralyne drastically reduced FAM fluorescence intensity of 5'-FAM-Bgt1 and 5'-FAM-Bgt1-3'-Dabcyl, suggesting the selectivity of the sensors for detecting coralyne. The limit of detection (LOD) of coralyne determined by 5'-FAM-Bgt1 and 5'-FAM-Bgt1-3'-Dabcyl were 0.034 μM and 0.021 μM, respectively. Furthermore, coralyne-5'-FAM-Bgt1 and coralyne-5'-FAM-Bgt1-3'-Dabcyl complexes were employed as turn-on fluorescent sensors for detecting β-Bgt and heparin. β-Bgt and heparin notably restored FAM fluorescence intensity of coralyne-5'-FAM-Bgt1 and coralyne-5'-FAM-Bgt1-3'-Dabcyl complexes. The LOD of β-Bgt measured by coralyne-5'-FAM-Bgt1 and coralyne-5'-FAM-Bgt1-3'-Dabcyl complexes were 3.57 nM and 2.74 nM, respectively; the LOD of heparin were 0.012 μg/ml and 0.004 μg/ml, respectively; and the LOD for heparin-spiked serum were 0.027 μg/ml and 0.009 μg/ml, respectively. The sensor system constructed by coralyne and Bgt1 showed a high selectivity for heparin detection than for other glycosaminoglycans including chondroitin sulfate and hyaluronic acid. Although the sensor system effectively differentiated β-Bgt from other purified snake venom proteins, it could not specifically detect Taiwan banded krait crude venom. Taken together, our data indicate that aptamer against β-Bgt can be used for constructing biosensors for detecting coralyne and heparin. However, the sensor system is unable to identify the crude venoms of different snake species via β-Bgt detection.
目次 Table of Contents
論文審定書+i
致謝+ii
中文摘要+iii
Abstract+iv
英文縮寫表+vi
目錄+viii
第一章 緒論+1
第二章 實驗材料與方法+7
第三章 結果+15
第四章 討論+22
圖表+28
附圖+57
參考文獻+71
參考文獻 References
Bhadra, K., & Kumar, G. S. (2011). Interaction of berberine, palmatine, coralyne, and sanguinarine to quadruplex DNA: a comparative spectroscopic and calorimetric study. Biochim. Biophys. Acta, 1810, 485-496.

Bhadra, K., Maiti, M., & Kumar, G. S. (2007). Molecular recognition of DNA by small molecules: AT base pair specific intercalative binding of cytotoxic plant alkaloid palmatine. Biochim. Biophys. Acta, 1770, 1071-1080.

Cao, R., & Li, B. (2011). A simple and sensitive method for visual detection of heparin using positively-charged gold nanoparticles as colorimetric sensors. Chem. Commun., 47, 2865-2867.

Chang, L. S., & Yang, C. C. (1993). Separation and characterization of the A chain and B chain in β1-bungarotoxin from Bungarus multicinctus (Taiwan banded krait) venom. J. Protein Chem., 12, 469-475.

Chang, L. S., Lin, S. K., Huang, H. B., & Hsiao, M. (1999). Genetic organization of α-bungarotoxins from Bungarus multicinctus (Taiwan banded krait): Evidence showing that the production of α-bungarotoxin isotoxins is not derived from edited mRNAs. Nucleic acids Res., 27, 3970-3975.

Chang, L. S., Lin, S. R., & Chang, C. C. (1998). Identification of Arg-30 as the essential residue for the enzymatic activity of Taiwan cobra phospholipase A2. J. Biochem., 124, 764-768.

Chen, R. F., & Knutson, J. R. (1988). Mechanism of fluorescence concentration quenching of carboxyfluorescein in liposomes: energy transfer to nonfluorescent dimers. Anal. Biochem., 172, 61-77.

Chen, Y. J., Tsai, C. Y., Hu, W. P., & Chang, L. S. (2016). DNA Aptamers against Taiwan Banded Krait α-Bungarotoxin Recognize Taiwan Cobra Cardiotoxins. Toxins, 8, 66.

Cole, J. R., Dick, L. W., Morgan, E. J., & McGown, L. B. (2007). Affinity capture and detection of immunoglobulin E in human serum using an aptamer-modified surface in matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem., 79, 273-279.

Demchenko, A. P. (2008). Introduction to fluorescence sensing. Springer Science & Business Media. pp. 91-99.

Demchenko, A. P. (2008). Introduction to fluorescence sensing. Springer Science & Business Media. pp. 154-156.

Dhananjaya, B. L., & D’souza, C. J. (2010). An overview on nucleases (DNase, RNase, and phosphodiesterase) in snake venoms. Biochemistry (Mosc.), 75, 1-6.

Ding, Y., Shi, L., & Wei, H. (2015). A “turn on” fluorescent probe for heparin and its oversulfated chondroitin sulfate contaminant. Chem. Sci., 6, 6361-6366.

Dong, le. V., Eng, K. H., Quyen, le. K., & Gopalakrishnakone, P. (2004). Optical immunoassay for snake venom detection. Biosens. Bioelectron., 19, 1285-1294.

Esko, J. D., & Zhang, L. (1996). Influence of core protein sequence on glycosaminoglycan assembly. Curr. Opin. Struct. Biol., 6, 663-670.

Fan, X., Lin, F., Zhang, Y., Zhao, J., Li, H., & Yao, S. (2012). A simple adenosine fluorescent aptasensor based on the quenching ability of guanine. New. J. Chem., 36, 2260-2265.

Fatima, L., & Fatah, C. (2014). Pathophysiological and pharmacological effects of snake venom components: molecular targets. J. Clin. Toxicol., 4, 2161-0495.

Ferapontova, E. E., & Gothelf, K. V. (2009). Effect of serum on an RNA aptamer-based electrochemical sensor for theophylline. Langmuir, 25, 4279-4283.

Fu, X., Chen, L., Li, J., Lin, M., You, H., & Wang, W. (2012). Label-free colorimetric sensor for ultrasensitive detection of heparin based on color quenching of gold nanorods by graphene oxide. Biosens. Bioelectron., 34, 227-231.

Ghisaidoobe, A. B., & Chung, S. J. (2014). Intrinsic tryptophan fluorescence in the detection and analysis of proteins: a focus on Förster resonance energy transfer techniques. Inter. J. Mol. Sci., 15, 22518-22538.

Harris, J. B., & Scott-Davey, T. (2013). Secreted phospholipases A2 of snake venoms: effects on the peripheral neuromuscular system with comments on the role of phospholipases A2 in disorders of the CNS and their uses in industry. Toxins, 5, 2533-2571.

Hirsh, J., & Raschke, R. (2004). Heparin and low-molecular-weight heparin: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest, 126, 188S-203S.

Huang, C. C., & Chang, H. T. (2008). Aptamer-based fluorescence sensor for rapid detection of potassium ions in urine. Chem. Commun., 1461-1463.

Huang, H., Shi, S., Zheng, X., & Yao, T. (2015). Sensitive detection for coralyne and mercury ions based on homo-A/T DNA by exonuclease signal amplification. Biosens. Bioelectron., 71, 439-444.

Hung, S. Y., & Tseng, W. L. (2014). A polyadenosine–coralyne complex as a novel fluorescent sensor for the sensitive and selective detection of heparin in plasma. Biosens. Bioelectron., 57, 186-191.

Jash, C., & Kumar, G. S. (2014). Binding of alkaloids berberine, palmatine and coralyne to lysozyme: a combined structural and thermodynamic study. RSC Adv., 4, 12514-12525.

Jiang, H., Ling, K., Tao, X., & Zhang, Q. (2015). Theophylline detection in serum using a self-assembling RNA aptamer-based gold nanoparticle sensor. Biosens. Bioelectron., 70, 299-303.

Jiang, H., Wang, G., & Zhang, X. (2015). Detection of heparin based on the conformational switch of DNA. Anal. Methods, 7, 7852-7857.

Julsing, M. K., Koulman, A., Woerdenbag, H. J., Quax, W. J., & Kayser, O. (2006). Combinatorial biosynthesis of medicinal plant secondary metabolites. Biomol. Eng., 23, 265-279.

Khan, A. Y., Hossain, M., & Kumar, G. S. (2012). Investigations on the interaction of the phototoxic alkaloid coralyne with serum albumins. Chemosphere, 87, 775-781.

Kini, R. M., & Doley, R. (2010). Structure, function and evolution of three-finger toxins: mini proteins with multiple targets. Toxicon, 56, 855-867.

Kluza, J., Baldeyrou, B., Colson, P., Rasoanaivo, P., Mambu, L., Frappier, F., & Bailly, C. (2003). Cytotoxicity and DNA binding properties of the plant alkaloid burasaine. Eur. J. Pharm. Sci., 20, 383-391.

Krey, A. K., & Hahn, F. E. (1969). Berberine: complex with DNA. Science, 166, 755-757.

Kumar, T. K., Jayaraman, G., Lee, C. S., Arunkumar, A. I., Sivaraman, T., Samuel, D., & Yu, C. (1997). Snake venom cardiotoxins-structure, dynamics, function and folding. J. Biomol. Struct. Dyn., 15, 431-463.

Kuo, C. Y., & Tseng, W. L. (2013). Adenosine-based molecular beacons as light-up sensors for sensing heparin in plasma. Chem. Commun., 49, 4607-4609.

Kwong, P. D., McDonald, N. Q., Sigler, P. B., & Hendrickson, W. A. (1995). Structure of β2-bungarotoxin: potassium channel binding by Kunitz modules and targeted phospholipase action. Structure, 3, 1109-1119.

Lakowicz, J. R. (2006). Quenching of fluorescence. In principles of fluorescence spectroscopy. Springer, pp. 278-327.

Li, L., Li, B., Qi, Y., & Jin, Y. (2009). Label-free aptamer-based colorimetric detection of mercury ions in aqueous media using unmodified gold nanoparticles as colorimetric probe. Anal. Bioanal. Chem., 393, 2051-2057.

Li, Y., Lee, H. J., & Corn, R. M. (2007). Detection of protein biomarkers using RNA aptamer microarrays and enzymatically amplified surface plasmon resonance imaging. Anal. Chem., 79, 1082-1088.

Lin, K. C., Wey, M. T., Kan, L. S., & Shiuan, D. (2009). Characterization of the interactions of lysozyme with DNA by surface plasmon resonance and circular dichroism spectroscopy. Appl. Biochem. Biotechno., 158, 631-641.

Lin, S. R., Chang, L. S., & Chang, K. L. (2002). Separation and structure-function studies of Taiwan cobra cardiotoxins. J. Protein Chem., 21, 81-86.

Lin, Y. H., & Tseng, W. L. (2011). Fluorescence detection of coralyne and polyadenylation reaction using an oligonucleotide-based fluorogenic probe. Chem. Commun., 47, 11134-11136.

Liou, J. C., Cheng, Y. C., Kang, K. H., Chu, Y. P., Yang, C. C., & Chang, L. S. (2004). Both A chain and B chain of β-bungarotoxin are functionally involved in the facilitation of spontaneous transmitter release in Xenopus nerve–muscle cultures. Toxicon, 43, 341-346.

Long, Y., Qin, Z., Duan, M., Li, S., Wu, X., Lin, W., Li, J., Zhao, Z., Liu, J., Xiong, D., Huang, Y., Hu, X., Yang, C., Ye, M., & Tan, W. (2016). Screening and identification of DNA aptamers toward Schistosoma japonicum eggs via SELEX. Sci. Rep., 6.

Mazzini, S., Bellucci, M. C., & Mondelli, R. (2003). Mode of binding of the cytotoxic alkaloid berberine with the double helix oligonucleotide d (AAGAATTCTT) 2. Bioorg. Med. Chem., 11, 505-514.

Megyesi, M., Biczók, L., & Görner, H. (2009). Dimer-promoted fluorescence quenching of coralyne by binding to anionic polysaccharides. Photochem. Photobiol. Sci., 8, 556-561.

Minton, S. A. (1987). Present tests for detection of snake venom: clinical applications. Ann. Emerg. Med., 16, 932-937.

Moraru-Allen, A. A., Cassidy, S., Alvarez, J. L. A., Fox, K. R., Brown, T., & Lane, A. N. (1997). Coralyne has a preference for intercalation between TA-T triples in intramolecular DNA triple helices. Nucleic Acids Res., 25, 1890-1896.

Padmapriya, K., & Barthwal, R. (2016). Binding of the alkaloid coralyne to parallel G-quadruplex DNA [d(TTGGGGT)] 4 studied by multi-spectroscopic techniques. Biophys. Chem., 219, 49-58.

Prydz, K. (2015). Determinants of glycosaminoglycan (GAG) structure. Biomolecules, 5, 2003-2022.

Quetin-Leclercq, J. (1994). Potential anticancer and antiparasitic indole alkaloids. J. Pharm. Belg., 49, 181-192.

Ren, J., & Chaires, J. B. (1999). Sequence and structural selectivity of nucleic acid binding ligands. Biochemistry, 38, 16067-16075.

Roncancio, D., Yu, H., Xu, X., Wu, S., Liu, R., Debord, J., Lou, X., & Xiao, Y. (2014). A label-free aptamer-fluorophore assembly for rapid and specific detection of cocaine in biofluids. Anal. Chem., 86, 11100-11106.

Rowan, E. G. (2001). What does β-bungarotoxin do at the neuromuscular junction?. Toxicon, 39, 107-118.

Sen, I., Grantham, P. A., & Cooper, J. R. (1976). Mechanism of action of beta-bungarotoxin on synaptosomal preparations. Proc. Nati. Acad. Sci., 73, 2664-2668.

Shi, Y. J., Wang, L. J., Lee, Y. C., Huang, C. H., Hu, W. P., & Chang, L. S. (2018). A turn-on fluorescence sensor for heparin detection based on a release of Taiwan cobra cardiotoxin from a DNA aptamer or adenosine-based molecular beacon. Molecules, 23, 460.

Simko, R. J., Tsung, F. F., & Stanek, E. J. (1995). Activated clotting time versus activated partial thromboplastin time for therapeutic monitoring of heparin. Ann. Pharmacother., 29, 1015-1021.

Sinha, R., Saha, I., & Kumar, G. S. (2011). Protoberberine alkaloids berberine, palmatine, and coralyne binding to poly (dT)⋅(poly (dA)⋅ poly (dT)) triplex: comparative structural aspects and energetics profiles of the interaction. Chem. Biodiversity, 8, 1512-1528.

Song, K. M., Lee, S., & Ban, C. (2012). Aptamers and their biological applications. Sensors, 12, 612-631.

Sun, H., Zhu, X., Lu, P. Y., Rosato, R. R., Tan, W., & Zu, Y. (2014). Oligonucleotide aptamers: new tools for targeted cancer therapy. Mol. Ther. Nucleic Acids, 3. e182.

Taira, Z., Matsumoto, M., Ishida, S., Ichikawa, T., & Sakiya, Y. (1994). Aggregation of DNA enhanced by the protoberberine alkaloids, coralyne and berberine. Chem. Pharm. Bull., 42, 1556-1561.

Thannhauser, T. W., Konishi, Y., & Scheraga, H. A. (1984). Sensitive quantitative analysis of disulfide bonds in polypeptides and proteins. Anal. Biochem., 138, 181-188.

Volpi, N. (2002). Oral bioavailability of chondroitin sulfate (Condrosulf®) and its constituents in healthy male volunteers. Osteoarthritis Cartilage, 10, 768-777.

Wang, L. K., Rogers, B. D., & Hecht, S. M. (1996). Inhibition of topoisomerase I function by coralyne and 5, 6-dihydrocoralyne. Chem. Res. Toxicol., 9, 75-83.

Wang, R. E., Wu, H., Niu, Y., & Cai, J. (2011). Improving the stability of aptamers by chemical modification. Curr. Med. Chem., 18, 4126-4138.

Wang, R. E., Zhang, Y., Cai, J., Cai, W., & Gao, T. (2011). Aptamer-based fluorescent biosensors. Curr. Med. Chem., 18, 4175-4184.

Weinstein, J. N., Yoshikami, S., Henkart, P., Blumenthal, R., & Hagins, W. A. (1977). Liposome-cell interaction: transfer and intracellular release of a trapped fluorescent marker. Science, 195, 489-492.

Wilson, W. D., Gough, A. N., Doyle, J. J., & Davidson, M. W. (1976). Coralyne. Intercalation with DNA as a possible mechanism of antileukemic action. J. Med. Chem., 19, 1261-1263.

Wu, P. F., & Chang, L. S. (2001). Expression of A chain and B chain of β-bungarotoxin from Taiwan banded krait: the functional implication of the interchain disulfide bond between A chain and B chain. J. Protein Chem., 20, 413-421.

Wu, P. F., Wu, S. N., Chang, C. C., & Chang, L. S. (1998). Cloning and functional expression of B chains of beta-bungarotoxins from Bungarus multicinctus (Taiwan banded krait). Biochem. J., 334, 87.

Xiang, Y., Tong, A., & Lu, Y. (2009). Abasic site-containing DNAzyme and aptamer for label-free fluorescent detection of Pb2+ and adenosine with high sensitivity, selectivity, and tunable dynamic range. J. Am. Chem. Soc., 131, 15352-15357.

Xiao, Y., Lubin, A. A., Baker, B. R., Plaxco, K. W., & Heeger, A. J. (2006). Single-step electronic detection of femtomolar DNA by target-induced strand displacement in an electrode-bound duplex. Proc. Nati. Acad. Sci., 103, 16677-16680.

Xiao, Y., Lubin, A. A., Heeger, A. J., & Plaxco, K. W. (2005). Label‐free electronic detection of thrombin in blood serum by using an aptamer‐based sensor. Angew. Chem. Int. Ed. Engl., 44, 5456-5459.

Xing, F., Song, G., Ren, J., Chaires, J. B., & Qu, X. (2005). Molecular recognition of nucleic acids: coralyne binds strongly to poly (A). FEBS lett., 579, 5035-5039.

Yang, S., Gao, T., Dong, J., Xu, H., Gao, F., Chen, Q., Gu, Y. & Zeng, W. (2017). A novel water-soluble AIE-based fluorescence probe with red emission for the sensitive detection of heparin in aqueous solution and human serum samples. Tetrahedron Lett., 58, 3681-3686.

Ye, F., Mi, Q., Zhang, N., Li, X., Yu, J., Gao, Z., Zheng, Y., Fan, Q. & Wang, J. (2016). Probing the key binding sequence and improvement of the stability of a β‐bungarotoxin‐binding aptamer in snake venom. Bull. Korean Chem. Soc., 37, 649-654.

Ye, F., Zheng, Y., Wang, X., Tan, X., Zhang, T., Xin, W., Wang, J., Huang, Y., Fan, Q., & Wang, J. (2014). Recognition of Bungarus multicinctus venom by a DNA aptamer against β-bungarotoxin. PLoS One, 9, e105404.

Young, H. S., Herbette, L. G., & Skita, V. (2003). α-Bungarotoxin binding to acetylcholine receptor membranes studied by low angle X-ray diffraction. Biophys. J., 85, 943-953.

Yu, C., Bhaskaran, R., Chuang, L. C., & Yang, C. C. (1993). Solution conformation of cobrotoxin: a nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing study. Biochemistry, 32, 2131-2136.

Zaug, A. J., Podell, E. R., & Cech, T. R. (2005). Human POT1 disrupts telomeric G-quadruplexes allowing telomerase extension in vitro. Proc. Nati. Acad. Sci., 102, 10864-10869.

Zee-Cheng, K. Y., Paull, K. D., & Cheng, C. C. (1974). Experimental antileukemic agents. Coralyne, analogs, and related compounds. J. Med. Chem., 17, 347-351.

Zhan, R., Fang, Z., & Liu, B. (2009). Naked-eye detection and quantification of Heparin in serum with a cationic polythiophene. Anal. Chem., 82, 1326-1333.

Zhang, S., Xia, J., & Li, X. (2008). Electrochemical biosensor for detection of adenosine based on structure-switching aptamer and amplification with reporter probe DNA modified Au nanoparticles. Anal. Chem., 80, 8382-8388.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code