Responsive image
博碩士論文 etd-0529114-214141 詳細資訊
Title page for etd-0529114-214141
論文名稱
Title
自旋頓挫態鋅釩氧之磁性與介電性研究
Magnetic and dielectric study on spin-frustrated ZnV2O4
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
79
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-05-31
繳交日期
Date of Submission
2014-06-29
關鍵字
Keywords
阻抗頻譜、尖晶石結構、多鐵性、結構相轉變、自旋玻璃態、自旋頓挫態
spinel structure, multiferroics, structural transition, spin glass, spin frustrated, impedance
統計
Statistics
本論文已被瀏覽 5767 次,被下載 825
The thesis/dissertation has been browsed 5767 times, has been downloaded 825 times.
中文摘要
我們主要的課題是去研究自旋頓挫態ZnV2O4之磁性與介電性特性,並去尋找此材料是否存在多鐵性性質。我們利用固態反應法去製作ZnV2O4,過程中以抽真空方式去進行不同燒結溫度下的樣品製作,所得樣品以X-Ray去檢測樣品純度與品質,我們發現燒結溫度800度比900度佳。由文獻我們可知ZnV2O4是尖晶石結構,且是一立方晶系結構。我們利用GSAS軟體去擬合我們所得之X繞射圖譜,得到晶格常數a=8.31 Å。由我們所量測之磁性結果,並無明顯發現有著反鐵磁相轉變,而在溫度約52K附近可能是一個結構相轉變(立方結構到四方結構),以及在溫度約9K附近有一類似自旋玻璃態的行為發生。在介電量測當中,我們發現在溫度約50K有一介電係數瞬間往下之階梯狀曲線,其曲線會隨頻率增大而往高溫區移動,在介電圖譜當中,沒顯現出有著鐵電性的特性,故我們初步認定ZnV2O4不具有多鐵性質的材料。另外,我們發現ZnV2O4有著很大的介電係數,並由阻抗頻譜中,頻譜與電模量隨著頻率之變化,我們可以看出晶粒與晶界之電的異質性。所以巨大介電常數可以歸因於麥克斯韋 - 瓦格納界面極化所造成。
Abstract
The purpose of this work is to study the correlation of magnetic and dielectric property in the spin-frustrated ZnV2O4 spinel oxide. The geometrically frustrated spinel ZnV2O4 prepared using solid state reaction method followed by annealing at different temperatures. X-ray diffraction (XRD) has been employed to check the phase purity of the sample. From XRD analysis, we found that, with increase of sintering temperature from 800℃ to 900℃ the secondary phases in appeared in XRD spectrum. Riveted analysis using GSAS software has been employed for structural refinement. The refinement fit to cubic crystal structure with Fd-3m space group with lattice parameter a = 8.31Å. Magnetization measurements reveal multiple magnetic transitions corresponding to cubic to tetragonal structural transition (52 K) and spin-glass-like behavior (9 K) respectively.
Among the dielectric measurement, huge permittivity with huge frequency dispersion has been noticed. With decreasing temperature, dielectric permittivity exhibit step like drop and this drop shift to high temperature for higher frequencies. And we did not find ferroelectric signature in dielectric spectrum. Therefore, we initially exclude the possibility of multiferroics of ZnV2O4. Moreover, frequency-impedance diagrams and modulus spectrum reveal the electrical heterogeneity across the grain and grain boundary. Based on our results, we attributed the huge dielectric constant to Maxwell - Wagner interfacial polarization.
目次 Table of Contents
致謝 i
論文摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
第一章 簡介 1
1-1 多鐵性 1
1-2 自旋頓挫態系統 6
1-3 ZnV2O4 之已發表物理特性 12
1-4 研究動機 20
第二章 實驗儀器 21
2-1 XRD 繞射儀 21
2-2 超導量子干涉儀 23
2-3 介電性量測與電阻率量測 29
2-4 掃描電子顯微鏡 31
第三章 結果與討論 32
3-1 ZnV2O4 樣品製備 32
3-2 樣品純度分析 38
3-3 X 光能譜分析儀 39
3-4 磁性分析 41
3-5 介電性分析 48
第四章 結論 60
參考文獻 63
參考文獻 References
[1] N. A. Spalddin and M. Fiebig, “The renaissance of magnetoelectric multiferroic”, Science 309, 391 (2005)
[2] J. P. Velev, S. S. Jaswal, and E. Y. Tsymbal, “Multi-ferroic and magnetoelectric materials and interfaces”, Phil. Trans. R. Soc. A 369, 3069 (2010)
[3] H. Schmid, “Multi-ferroic magnetoelectrics”, Ferroelectrics 317, 162 (1994)
[4] S. Mukherjee, C. H. Chen, C. C. Chou, K. F. Tseng, B. K. Chaudhuri, and H. D. Yang,“Reply to “Comment on ‘Colossal dielectric and magnetodielectric effect in Er2O3 nanoparticles embedded in a SiO2 glass matrix”, Phys. Rev. B 84, 056103 (2011)
[5] D. Hreniak, L. Marciniak, W. Strek, F. Piccinelli, A. Speghini, and M. Bettinelli,“Comment on“Colossal dielectric and magnetodielectric effect in Er2O3 nanoparticles embedded in a SiO2 glass matrix”, Phys. Rev. B 84, 056102 (2011)
[6] R. S. Freitas, J. F. Mitchell, and P. Schiffer,“Magnetodielectric consequences of phase separation in the colossal magnetoresistance manganite Pr0.7Ca0.3MnO3”, Phys. Rev. B 72, 144429 (2005)
[7] B. Lorenz, Y. Q. Wang, Y. Y. Sun, and C. W. Chu,“Large magnetodielectric effects in orthorhombic HoMnO3 and YMnO3”, Phys. Rev. B 70, 212412 (2004)
[8] S. Mukherjee, C. H. Chen, C. C. Chou, K. F. Tseng, B. K. Chaudhuri, and H. D. Yang, “Colossal dielectric and magnetodielectric effect in Er2O3 nanoparticles embedded in a SiO2glass matrix”, Phys. Rev. B 82, 104107 (2010)
[9] J. P. Rivera, “A short review of the magnetodielectric effect and related experimental techniques on single phase (multi-) ferroics”, Eur. Phys. J. B 71, 299 (2009)
[10] N. Hur, S. Park, P. A. Sharma, S. Guha, and S.-W. Cheong, “Colossal magnetodielectric effects in DyMn2O5”, Phys. Rev. Lett. 93, 107207 (2004)
[11] T. I. Yang, R. N. C. Brown, L. C. Kempel, and P. Kofinas, “Controlled synthesis of core–shell iron–silica nanoparticles and their magneto-dielectric properties in polymer composites”, Nanotechnology 22, 105601 (2011)
[12] X. Wu, X. Wang, Y. Liu, W. Cai, S. Peng, F. Huang, X. Lu, F. Yan, and J. Zhu, “Study on dielectric and magnetodielectric properties of Lu3Fe5O12 ceramics”, Appl. Phys. Lett. 95, 182903 (2009)
[13] A. Pimenov, A. A. Mukhin, V. Yu. Ivanov, V. D. Travkin, A. M. Balbashov and A. Loidl, “Possible evidence for electromagnons in multiferroic manganites”, Nature Physics 2, 97 (2006)
[14] D. S. Rana, I. Kawayama, K. Mavani, K. Takahashi, H. Murakami, and M. Tonouchi, “Understanding the nature of ultrafast polarizationdynamics of ferroelectric memory in the multiferroic BiFeO3”, Adv. Mater. 21, 2881 (2009)
[15] M. Gich, C. Frontera, A. Roig, J. Fontcuberta, E. Molins, N. Bellido, C. Simon, and C. Fleta, “Magnetoelectric coupling in ɛ-Fe2O3nanoparticles”, Nanotechnology 17, 687 (2006)
[16] H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, and R. Ramesh, “Multiferroic BaTiO3-CoFe2O4”, Science 303, 661 (2004)
[17] H. Mosallaei and K. Sarabandi, “Magneto-dielectrics in electromagnetics: concept and applications”, IEEE Trans. Antennas Propagat. 52, 1558 (2004)
[18] W. Eerenstein, N. D. Mathur, and J. F. Scott, “Multiferroic and magnetoelectric materials”, Nature (London) 442, 17 (2006)
[19] P. Schiffer and AP Ramirez, “Recent Experimental Progress in the Study of Geometrical Magnetic Frustration”,Comments Condens. Matter Phys. 18, 21 (1996)
[20] G. H. Wannier, “Antiferromagnetism the triangular ising net”, Phys. Rev. 79, 357 (1950)
[21] J. Vannimenus and G. Toulouse, “Theory of the frustration effect: ΙΙ. Ising spins on a square lattice”, J. Phys. C 10, L537 (1977)
[22] A. Kreisel, P. Kopietz, P. T. Cong, B. Wolf, and M. Lang, “Elastic constants and ultrasonic attenuation in the cone state of the frustrated antiferromagnet Cs2CuCl4”, Phys. Rev. B 84, 024414 (2011)
[23] K. Matan, D. Grohol, D. G. Nocera, T. Yildirim, A. B. Harris, S. H. Lee, S. E. Nagler, and Y. S. Lee, “Spin waves in the frustrated kagomé lattice antiferromagnet KFe3(OH)6(SO4)2”, Phys. Rev. Lett. 96, 247201 (2006)
[24] K. Matsuhira, M. Tokunaga, M. Wakeshima, Y. Hinatsu, and S. Takagi,“Giant magnetoresistance effect in the metal-insulator transition of pyrochlore oxide Nd2Ir2O7”, J. Phys. Soc. Jpn. 82, 023706 (2013)
[25] A. N. Yaresko, “Electronic band structure and exchange coupling constants in ACr2X4 spinels (A=Zn, Cd, Hg; X=O, S, Se)”, Phys. Rev. B.77, 115106 (2008)
[26] Luan, Yanbing, “Elastic properties of complex transition metal oxides studied by Resonant Ultrasound Spectroscopy” Ph.D. dissertation, University of Tennessee (2011)
[27] A.P. Ramirez, “Strongly geometrically frustrated magnets”, Annu. Rev. Mater. Sci. 24,453 (1994)
[28] George Jacheli, “The ground state phases of orbitally degenerate spinel oxides”, J. of Molecular Structure 838, 220 (2007)

[29] R. Moessner, “Magnets with strong geometric frustration”, Can. J. Phys.79, 1283 (2001)
[30] B. Canals and C. Lacroix, “Quantum spin liquid: The Heisenberg antiferromagnet on the three-dimensional pyrochlore lattice”, Phys. Rev. B 61, 1149 (2000)
[31] S. Niziol, “Investigation of magnetic properties of ZnV2O4 spinel”, Phys. Stat. Sol. (a) 18, K11 (1973)
[32] Yutaka Ueda, “Magnetic and structural transitions in (LixZn1-x)V2O4 with the spinel structure”, J. Phys. Soc. Jpn. 66, 778 (1997)
[33] S. G. Ebbinghaus, J. Hanss, M. Klemm, and S. Horn, “Crystal structure and magnetic properties of ZnV2O4”, Journal of Alloys and Compounds 370, 75 (2004)
[34] Yasufumi Yamashita and Kazuo Ueda, “Spin-driven Jahn-Teller distortion in a pyrochlore system”, Phys. Rev. Lett. 85,4960(2000)
[35] Yukitoshi Motome and Hirokazu Tsunetsugu, “Theroy of successive transition in vanadium spinels and order of orbitals and spins”, Progress of Theoretical Physics Supplement 160, 203(2005)
[36] S. H. Lee, D. Louca, H. Ueda, S. Park, T. J. Sato, M. Isobe, Y. Ueda., S. Rosenkranz, P. Zschack, J. Iniguez, Y. Qiu, and R. Osborn, “Orbital and spin chains in ZnV2O4”, Phys. Rev. Lett. 93, 156407 (2004)
[37] O. Tchernyshyov, “Structural orbital and magnetic order in vanadium spinels”, Phys. Rev. Lett. 93, 157206 (2004)
[38] 楊鴻昌, “最敏感的感測元件 SQUID 及其前瞻性應用” 24, 652(2002)
[39] Lingxing Zeng, Lingxing Zeng, Fuyu Xiao, Jingchao Wang, Shaokang Gao, Xiaokun Ding, and Mingdeng Wei, “ZnV2O4–CMK nanocomposite as an anode material for rechargeable lithiumion batteries”, J. Mater. Chem. 22, 14284 (2012)
[40] H. M. Rietveld, “A profile refinement method for nuclear and magnetic structure”, J. Appl. Cryst. 2, 65 (1969)
[41] R. J. Hill and I. C. Madsen, “Data Collection Strategies for Constant Wavelength Rietveld Analysis”, Powder Diffraction, 2, 146 (1987)
[42] R. J. Hill and C. J. Howard, “Peak shape variation in fixed-wavelength neutron powder diffraction and its effect on structural parameters obtained by Rietveld analysis”, J. Appl. Cryst. 18, 173 (1985)
[43] M. Reehuis, A. Krimmel, N. Buttgen, A. Loidl, and A.Prokofiev “Crystallographic and magnetic structure of ZnV2O4”, Eur. Phys. J. B 35, 311–316 (2003)
[44] V. Pardo et al., “Homopolar bond formation in ZnV2O4 close to a metal-insulator transition”, Phys. Rev. Lett. 101, 256403 (2008)
[45] S. Song and F. Placido, “The influence of phase probability distributions on impedance spectroscope”, J Stat. Mech: Theor. Exp. 10, P10018 (2004)
[46] P. Lunkenheimer, V. Bobnar,A.V. Pronin, A.I. Ritus, A.A. Volkov,and A.Loidl1, “Origin of apparent colossal dielectric constants”, Phys. Rev. B 66, 052105 (2002)
[47] P. K Jana, S. Sarkar, and B. K. Chaudhuri, “Low loss giant dielectric and electrical transport behavior of KxTiyNi1-x-yO system”, Appl. Phys. Lett. 88, 182901 (2006)
[48] C. Kittel,“Introduction to solid state physics”, 8th edition (2005)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code