Responsive image
博碩士論文 etd-0529115-153843 詳細資訊
Title page for etd-0529115-153843
論文名稱
Title
MIMO天線設計與該天線無線傳輸效能之探討
Design of MIMO Antennas and Evaluation of Their Wireless Performance
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
162
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-24
繳交日期
Date of Submission
2015-06-29
關鍵字
Keywords
橋接器、全金屬、多輸入多輸出技術、平面倒F形天線、傳輸線天線、共輻射體、印刷天線
Transmitted antenna, MIMO technology, Access Point, Full-metal, co-radiator, PIFA, Printed antenna
統計
Statistics
本論文已被瀏覽 5738 次,被下載 0
The thesis/dissertation has been browsed 5738 times, has been downloaded 0 times.
中文摘要
現代無線通信系統對於高數據傳輸速率和通道容量的需求,依舊是系統發展與研究創新的主要重點。這些技術中,MIMO天線是被用來實現上述目標和增加傳輸路徑的主要方法。而MIMO天線設計的主要挑戰是要求在一個小尺寸且外型低矮的無線通信設備中使用,其中特別是由於天線元件的有限間距造成的相互耦合問題。要如何降低這些天線元件間的互耦影響,以提高多天線傳輸特性,成為現代無線通信系統設計的一個重要議題。
本文提出了一些MIMO天線設計的創新和發展的研究課題。首先,文中提出所設計之三組不同的全金屬MIMO天線,藉由良好的性能與結構,使它可以很容易地與其它電子元件結合,而不會影響彼此特性,尤其適合車輛或機械人系統應用。接著,提出了一種新穎的結構,它是一種微帶印刷天線,稱為PIFA-like,它近似中和線(Neutralization Line, NL),但是性質卻不相同。此種PIFA-like天線可以提供優異的MIMO性能,但不需要額外的元件或空間來改善隔離度,並能使天線尺寸小型化。最後,我們探索電波暗室和微波混響室之間的差異,透過實際測量兩種不同結構的PIFA-like MIMO天線,並比較兩種天線的輻射效率和通道容量的實驗值,希望能提供相類似天線的發展經驗。現今無線通訊已經準備進入5G時代,而MIMO天線仍是主要需求技術,所以希望這一連串的實驗和創作,能夠帶來新的思路和解決方案,以有助於新的通信技術快速發展。
Abstract
The demand for high data rates and channel capacity is always the primary pursuit in modern wireless communication systems. In the pursuit, MIMO antennas are used to achieve the goal by accommodating multiple data streams. The main challenge of MIMO antenna design is to fit the antenna in a small and low-profile wireless communication device, and at the same time to reduce the mutual coupling between the antenna elements. The mutual coupling is due to the closely spaced antenna elements.
This dissertation presents several novel MIMO antenna systems. First, three full-metal MIMO antennas were designed with good performance. The full-metal MIMO antennas can be easily combined with other electronic components without being affected; especially when they are used in vehicular or robotic applications. Next, a novel MIMO antenna based on single-body PIFA-like is proposed. The structure looks like a neutralization line (NL), but in reality it is fundamentally different from a NL. The PIFA-like antenna can provide high isolation, but do not need additional elements or space to achieve the goal. Finally, we explore measurement differences between the anechoic chamber and reverberation chamber by measuring two reference MIMO antennas of PIFA-like configurations. Specifically, antenna radiation efficiency and channel capacity of these two reference designs were obtained. MIMO antenna technology is one of key technologies that can be used to fulfill the goals of 5G. Hopefully, this study contributes to better MIMO antenna design.
目次 Table of Contents
目錄
論文審定書 i
Acknowledgements iii
摘要 v
Abstract vi
Contents vii
List of figures ix
List of tables xiv
Chapter 1 Introduction 1
1.1 Motivation and scope of dissertation 1
1.2 Research methods 5
1.3 Contributions and outline of dissertation 7
Chapter 2 MIMO antenna design theory and methods 10
2.1 MIMO antenna characteristics 11
2.2 Methods for improved isolation 22
2.3 Co-radiator structure design 35
2.4 Discussion 39
Chapter 3 Full metal MIMO antenna design 41
3.1 A concurrent dual-band six antenna system for MIMO access points applications 43
3.2 A high port isolation access point MIMO system using a triangular located hexahedron 49
3.3 A high port isolation MIMO antenna system for 2-6 GHz wide-band AP applications 57
3.4 Discussion 62
Chapter 4 Low-profile PIFA-like MIMO antennas design 66
4.1 Case-1: A π-shaped PIFA-like MIMO antenna with built-in isolation 67
4.2 Case-2: A polarization diversity MIMO antenna system for 2.4/5 GHz dual-bands access point applications 86
4.3 Discussion 97
Chapter 5 Evaluation of radiation performance of various PIFA-like MIMO antennas 103
5.1 Measurements of MIMO antenna 104
5.2 Reference antennas 114
5.3 Comparison of different measurement results 117
5.4 Discussion 119
Chapter 6 Conclusion and future work 121
6.1 Conclusion- major contributions 121
6.2 Future work 124
Reference 127
Publications 144
參考文獻 References
Reference

[1] S. Bellofiore, C. A. Balanis, J. Foutz, and A. S. Spanias,‶Smart-antenna systems for mobile communication networks. Part 1: Overview and antenna design,″ IEEE Antennas Propag. Mag., pp. 145-154, June 2002.
[2] C. Yu and D. Li, ‶A study of multi-input multi-output (MIMO) channel model and its impact on the capacity, ″Int. Commun. Tech. Proc. (ICCT), Vol. 2, pp. 1461-1463, 2003.
[3] 3GPP, ‶Physical layer aspects of UTRA high speed downlink packet access, ″Tech. Spec. TR 25.848 V4.0.0, Mar. 2001.
[4] M.A. Jensen and J.W. Wallance , ‶A review of antennas and propagation for MIMO wireless communications, ″IEEE Trans. Antennas Propag., Vol. 52, pp. 2810-2824, 2004.
[5] Wikipedia, Title: IEEE 802.11n, the free encyclopedia, Available: http://en.wikipedia.org/wiki/ IEEE_802.11n.
[6] C.C. Chiau, X. Chen, and C.G. Parini, ‶A compact four-element diversity-antenna array for PDA terminals in a MIMO system, ″Microw. Opt. Tech. Lett., Vol. 44, pp. 408-412, 2005.
[7] S.B. Yeap, X. Chen, J.A. Dupuy, C.C. Chiau, and C.G. Parini, ‶Low-profile diversity antenna for MIMO applications, ″Electron. Lett, Vol. 42, pp. 69-71, 2006.
[8] K.-L. Wong, C.-H. Chang, B. Chen, and S. Yang, ‶Three-antenna MIMO system for WLAN operation in a PDA phone , ″Microw. Opt. Tech. Lett., Vol. 48, pp. 1238-1242, 2006.
[9] T.-Y. Wu, S.-T. Fang, and K.-L. Wong, ‶Printed diversity monopole antenna for WLAN operation, ″Electron. Lett., Vol. 38, pp. 1625-1626, Dec. 2002.
[10] T. Ohishi, N. Oodachi, S. Sekine, and H. Shoki, ‶A method to improve the correlation coefficient and the mutual coupling for diversity antenna,″ IEEE Antennas Propag. Soc. Int. Symp. Dig., pp. 507-510, 2005.
[11] G.-A. Mavridis, J.-N. Sahalos, and M.-T. Chryssomallis, ‶Spatial diversity two-branch antenna for wireless devices,″ Electron. Lett., Vol. 42, pp. 266-268, Mar. 2006.
[12] C.-Y. Chiu, C.-H. Cheng, R.-D. Murch and C.-R. Rowell, ‶Reduction of mutual coupling between closely-packed antenna elements, ″IEEE Trans. Antennas Propag., Vol. 5, No. 6, pp. 1732-1738, Jun. 2007.
[13] K.-L. Wong and J.-H. Chou, ‶Integrated 2.4- and 5-GHz WLAN antennas with two isolated feeds for dual-module applications, ″Micro. Opt. Technol. Lett., Vol. 47, pp. 263-265, Nov. 2005.
[14] S.-W. Su, J.-H. Chou, and T.-Y. Wu, ‶Internal broadband diversity dipole antenna, ″Micro. Opt. Technol. Lett., Vol. 49, pp. 810-812, Apr. 2007.
[15] Y. Ge, K.-P. Esselle, and T.-S. Bird, ‶Compact diversity antenna for wireless devices, ″ Electron. Lett., Vol. 41, pp. 52-53, Jan. 2005.
[16] S.-W. Su, J.-H. Chou, and Y.-T. Liu, ‶Realization of dual-dipole-antenna system for concurrent dual-radio operation using polarization diversity, ″Micro. Opt. Technol. Lett., Vol. 51, pp. 1725-1729, Jul. 2009.
[17] S.-W. Su, ‶A three-in-one diversity antenna system for 5 GHz WLAN applications, ″Micro. Opt. Technol. Lett., Vol. 51, pp. 2477-2481, Oct. 2009.
[18] W.-J. Lee, C. Yoon, S.-U. Kim, and H.-D. Park, ‶A study on isolation enhancement of MIMO antenna using differential ground path, ″Micro. Opt. Technol. Lett., Vol. 54, No.3, pp. 802-805, Mar. 2012.
[19] T.-W. Kang and K.-L. Wong , ‶Isolation improvement of 2.4/5.2/5.8 GHz WLAN internal laptop computer antennas using dual-band strip resonator as a wavetrap, ″Micro. Opt. Technol. Lett., Vol. 52, No. 1, pp. 2478-2481, Jan. 2010.
[20] S.-W. Su and C.-T. Lee, ‶Printed to monopole-antenna system with a decoupling neutralization line for 2.4-GHz MIMO applications,″ Micro. Opt. Technol. Lett., Vol. 53, No. 9, pp. 456-463, Sep. 2011.
[21] S.-W. Su, C.-T. Tse, and F.-S. Chang, ‶Printed MIMO-antenna system using neutralization-line technique for wireless USB-dongle applications, ″ IEEE Trans. Antennas Propag., Vol. 60, No.2, pp. 456-463, Jun. 2012.
[22] A. H. Yamini, M. Soleimani, and N. Komjani,‶Bow-tie micro-strip antenna analysis and design using the FDTD method,″ Asia-Pacific Conf. Applied Electromagnetics (APACE), pp. 42-45, 2003.
[23] E. Telatar, ‶Capacity of multi-antenna gaussian channels,″ AT&T-Bell Lab., 1995.
[24] G.J. Foschini, ‶Layered space-time architecture for wireless communication in a fading environment when using multiple antennas,″ J. Bell Lab. Tech. pp. 41-59, 1996,.
[25] V. Tarokh, N. Seshachi, and A.R. Calderbank, ‶Space-time codes for high data rate wireless communications performance analysis and code construction,″ IEEE Trans. Inf. Theory, pp. 744-765, 1998.
[26] P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. Valenzuela, ‶V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel,″ Int. Symp. Signals, Systems, Electron. (ISSSE 98), pp. 295-300, 1998.
[27] John L. Volakis, Antenna engineering handbook, 4th edition, McGraw-Hill, New York, Ch. 57, 2007.
[28] Figure referred from Wikipedia, Available: http://en.wikipedia.org/wiki/MIMO
[29] Referred from Rohde & Schwarz, Available: http://www.rohde-schwarz.com/en/home_48230.html
[30] Kyohei Fujimoto, Mobile antenna systems handbook, 3rd edition, Artech House, INC., Norwood, Massachusetts, Ch.14, June 2008.
[31] T. M. Cover and J. A. Thomas, Elements of information theory, John Wiley & Sons, Hoboken, NJ, 1991.
[32] C. E. Shannon, ‶A Mathematical Theory of Communication,″ Bell System Tech. J., Vol. 27, June 1984.
[33] G. J. Foschini and M. J. Gans, ‶On limits of wireless communication in a fading environment when using multiple antennas, ″Wireless Personal Commun., Vol. 6, No. 3, pp. 311-335, Mar. 1998.
[34] P. Kyritsi, D. C. Cox, R. A. Valenzuela, and P. W. Wolniansky, ‶Correlation analysis based on channel measurements in an indoor environment,″ IEEE J. Sel. Areas Commun., Vol. 21, No. 5, pp. 713-720, June 2003.
[35] D. S. Shiu, G. J. Foschini, and M. J. Kahn, ‶Fading correlation and its effect on the capacity of multielement antenna systems,″ IEEE Trans. Commun.,Vol. 48, pp. 502-513, Mar. 2000.
[36] M. Manteghi and Y. Rahmat-Samii, ‶Multiport characteristics of a wide-band cavity backed annular patch antenna for multi-polarization operations, ″IEEE Trans. Antennas Propag., Vol. 53, pp. 466-474, Jan. 2005.
[37] S. Blanch, J. Romeu, and I. Corbella, ‶Exact representation of antenna system diversity performance from input parameter description, ″Electron. Lett., Vol. 39, pp. 705-707, May 2003.
[38] S. H. Chae, S.-K. Oh, and S.-O. Park, ‶Analysis of mutual coupling, correlations, and TARC in WiBro MIMO array antenna,″ IEEE Antennas Wireless Propag. Letters, Vol. 6, pp. 122-125, 2007.
[39] L. Zhengn and D. Tse, ‶Diversity and multiplexing: A fundamental tradeoff in multiple antenna channels,″ IEEE Trans. Inf. Theory, Vol. 49, pp. 1073-1096, May 2003.
[40] J. P. Kermoal, L. Schumacher, F. Frederiksen, and P. E. Mogensen, ‶Polarization diversity in MIMO radio channels: experimental validation of a stochastic model and performance assessment,″ in Proc. IEEE 54th Veh. Technol. Conf., Vol.1, pp. 22-26, Oct. 2001.
[41] D. P. McNamara, M. A. Beach, P. N. Fletcher, and P. Karlsson, ‶Capacity variation of indoor multiple-input multiple-output channels,″ Electron. Lett., Vol.36, pp. 2037-2038, Nov. 2000.
[42] C. F. Ball, E. Humburg, S. Eder, and L. Lacinak, ‶WiMax capacity enhancements introducing MIMO 2×2 diversity and spatial multiplexing,″ 16th IST Mobile and Wireless Commun. Summit, pp. 1-5, 2007.
[43] J.-Y. Chung, T. Yang, J. Lee, and J. Jeong, ‶Low correlation MIMO antenna for LTE 700MHz band,″ IEEE Int. Symp. Antennas Propag. (APS/URSI), pp. 2202-2204, 2011.
[44] H. Minseok and C. Jaehoon,‶Dual-band MIMO antenna using a symmetric slotted structure for 4G USB dongle application,″ IEEE Int. Symp. Antennas. Propag. (APS/URSI), pp. 2223-2226, 2011.
[45] X. Y. Yao and J. Yu, ‶Multiband planar monopole antenna for LTE MIMO systems,″ Int. J. Antennas Propag., Article ID 890705, 6 pages, 2012.
[46] S.-W. Su, ‶A three-in-one diversity antenna system for 5 GHz WLAN applications,″ Micro. Opt. Technol. Lett., Vol. 51, pp. 2477-2481, Oct. 2009.
[47] H. Min-Scok and C. Jachoon, ‶Multiband MIMO antenna with a band stop filter for high isolation characteristics,″ IEEE Int. Symp. Antennas Propag. Society (APS/URSI), pp. 1-4, 2009.
[48] H. Lihao, Z. Huiling, H. Zhang, and C. Quanming, ‶Reduction of mutual coupling between closely-packed antenna elements with split ring resonator (SRR),″ Int. Conf. Microw. Millimeter Wave Technol. (ICMMT), pp. 1873-1875, 2010.
[49] V. Ssorin, A. Artemenko, A. Sevastyanov, and R. Maslennikov, ‶Compact bandwidth- optimized two element MIMO antenna system for 2.5 – 2.7 GHz band,″ Proc. 5th European Conf. Antennas Propag. (EUCAP), pp. 319-323, 2011.
[50] H. MinSeok and C. Jaehoon, ‶Compact multiband MIMO antenna for next generation USB dongle application,″ IEEE Int. Symp. Antennas Propag. Society (APS/URSI), pp. 1-4, 2010.
[51] C.-X. Mao and Q.-X. Chu, ‶Compact co-radiator UWB-MIMO antenna with dual polarization,″ IEEE Trans. Antennas Propag., Vol.62, No.9, pp. 4474-4480, Sep. 2014.
[52] S. C. K. Ko and R. D. Murch, ‶Compact integrated diversity antenna for wireless communications,″ IEEE Trans. Antennas Propag., Vol. 49, No. 6, pp. 954-960, Jun. 2001.
[53] V. Ssorin, A. Artemenko, A. Sevastyanov, and R. Maslennikov, ‶Compact planar inverted-F antenna system for MIMO USB dongle operating in 2.5-2.7 GHz band,″ 42nd European Microw. Conf. (EuMC), pp. 408-411, 2012.
[54] Jian-Feng Li and Qin-Xin Chu, ‶Compact MIMO antenna with simple decoupling method,″ European Microw. Conf. (EuMC), pp. 774- 777, 2013.
[55] I-Han Liu, Shun-Yun Lin, and Yuan-Chih Lin, ‶Compact MIMO antenna for mini-laptop,″ Asia-Pacific Microw. Conf. (APMC), pp. 833-836, 2011.
[56] R. Kumari and S. K. Behera,‶Mutual coupling reduction in C-shaped dielectric resonator antenna array for MIMO applications,″ Annual IEEE India Conf. (INDICON), pp. 110-114, 2012.
[57] Yi, Lijun and Yu, Yantao, ‶Dual-frequency MIMO antennas with reduced mutual coupling,″ Asia-Pacific Microw. Conf. (APMC), pp. 507-509, 2014.
[58] J. Ouyang, F. Yang, and Z. M. Wang, ‶Reducing mutual coupling of closely spaced microstrip MIMO antennas for WLAN application,″ IEEE Antennas Wireless Prop. Lett., pp. 310-313, 2011.
[59] J. Lu, Z. Kuai, X. Zhu, and N. Zhang, ‶A high-isolation dual-polarization microstrip patch antenna with quasi-cross-shaped coupling slot,″ IEEE Trans. Antennas Propag., Vol.59, No.7, pp. 2713-2717, July 2011.
[60] C.-J. Lee, L.-T. Hwang; T.-S.J. Horng, S.-M. Wang, Y.-C. Lin, and K.-H. Lin, ‶A MIMO antenna with built-in isolation for WLAN USB dongle applications,″ Asia-Pacific Microw. Conf. (APMC), pp. 1055-1057, 2013.
[61] I. Dioum, A. Diallo, S. M. Farssi, and C. Luxey, ‶A novel compact dual-band LTE antenna-system for MIMO operation,″ IEEE Trans. Antennas Propag., Vol.62, no.4, pp. 2291-2296, Apr. 2014.
[62] S.B. Yeap, X. Chen, J.A. Dupuy, C.C. Chiau, and C.G. Parini, ‶Low-profile diversity antenna for MIMO applications,″ Electron. Lett., Vol. 42, pp. 69-71, 2006.
[63] S. Park and C. Jung, ‶Compact MIMO antenna with high isolation performance,″ Electron. Lett., Vol. 46, pp. 390-391, 2010.
[64] R.G. Vaughan and J.B. Andersen, ‶Antenna diversity in mobile communications,″ IEEE Trans. Veh. Technol., Vol. 36, pp. 149-172, 1987.
[65] G. Kumar and K.C. Gupta, ‶Directly coupled multiple resonator wide-band micro-strip antennas,″ IEEE Trans. Antennas Propag., Vol. 33, pp. 588-593, 1985.
[66] G. Kumar and K.C. Gupta, ‶Broad-band micro-strip antennas using additional resonators gap-coupled to the radiating edges, ″IEEE Trans. Antennas Propag., Vol. 32, pp. 1375-1379, 1984.
[67] T.M. Au and K.M. Luk, ‶Effects of parasitic elements on the characteristics of micro-strip antennas, ″IEEE Trans. Antennas Propag., Vol. 39, pp. 1247-1251, 1991.
[68] T. Huynh and K.F. Lee, ‶Single-layer single-patch wideband micro-strip antenna,″ Electron. Lett., Vol. 31, pp. 1310-1311, 1995.
[69] N. Herscovici, ‶A wide-band single-layer patch antenna,″ IEEE Trans. Antennas Propag., Vol. 46, pp. 471-473, 1998.
[70] H.F. Pues and A. Van de Capelle, ‶An impedance-matching technique for increasing the bandwidth of micro-strip antennas,″ IEEE Trans. Antennas Propag., Vol. 37, pp. 1345-1354, 1989.
[71] Muhammad Imran Nawaz, Zhao Huiling, Muhammad Sabir Sultan Nawaz, Khalid Zakim, Shah Zamin, and Aurangzeb Khan, ‶A review on wideband microstrip patch antenna design techniques,″ Int. Conf. Aerospace Science Engineering (ICASE), pp.1-8, 2013.
[72] IEEE ratifies 802.11n, Wireless LAN specification to provide significantly improved data throughput and range, The IEEE Standard Association, Available: http://standards.ieee.org/announcements/ieee802.11n_2009amendment_ratified.html.
[73] A. Diallo, C. Luxey, P. Le Thuc, R. Staraj, and G. Kossiavas, ‶Study and reduction of the mutual coupling between two mobile phone PIFAs operating in the DCS1800 and UMTS bands,″ IEEE Trans. Antennas Propag., Vol. 54, pp. 3063-3074, 2005.
[74] A. Diallo, C. Luxey, P. Le Thuc, R. Staraj, and G. Kossiavas, ‶Enhanced two-antenna structures for universal mobile telecommunications system diversity terminals,″ IET Microw. Antennas Propag., Vol. 2, pp. 93-101, 2008.
[75] Angns C. K. Mak, Corbett R. Rowell, and Ross D. Murch, ‶Isolation enhancement between two closely packed antennas,″ IEEE Trans. Antennas Propag., Vol. 56, No. 11, pp. 3411-3419, 2008.
[76] Z. Li, M.-S. Han, X. Zhao, and J. Choi, ‶MIMO antenna with isolation enhancement for wireless USB dongle application at WLAN band,″ Asia-Pacific Microw. Conf. (APMC), pp. 758-761, 2010.
[77] Y.-K. Tseng, Y.-L. Lin, and L.-T. Hwang, ‶Implementation of a MIMO antenna design for USB dongle applications,″63rd Electron. Compon. Technol. Conf. (ECTC), pp. 2089-2094, 2013.
[78] W. J. Liao, S.-H. Chang, J.-T. Yeh, and B. R. Hsiao, ‶Compact dual-band WLAN diversity antenna on USB dongle platform,″ IEEE Trans. Antennas Propag., Vol. 62, No.1, pp. 109-118, 2014.
[79] A. Diallo, C. Luxey, P. Le-Thuc, R. Staraj, and G. Kossiavas, ‶Study and reduction of the mutual coupling between two mobile phone PIFAs operating in the DCS1800 and UMTS bands,″ IEEE Trans. Antennas Propag., Vol. 54, No. 11, pp. 3063-3074, Nov. 2006.
[80] W. N. N. W. Marzudi, Z. Z. Abidin, S. Z. Muji, Ma Yue, and Raed A. Abd-Alhameed, ‶Minimization of mutual coupling using neutralization line technique for 2.4 GHz wireless applications,″ The Soc. Digital Inf. Wireless Commun. (SDIWC), pp. 26-32, April 2014.
[81] P.-S. Kildal and K. Rosengren, ‶Electromagnetic analysis of effective and apparent diversity gain of two parallel dipoles,″ IEEE Antennas Wireless Propag. Lett., Vol. 2, pp. 9-13, 2003.
[82] P. Vainikainen, J. Ollikainen, O. Kivekas, and I. Kelander, ‶Resonator-based analysis of the combination of mobile handset antenna and chassis,″ IEEE Trans. Antennas Propag., Vol. 50, No. 10, pp. 1433-1444, Oct. 2002.
[83] U. Bulus and K. Solbach, ‶Modelling of the monopole interaction with a small chassis,″ EuCAP 2009 3rd European Conf., pp. 358-361, March 2009.
[84] U. Bulus, C. T. Famdie, and K. Solbach, ‶Equivalent-circuit modelling of chassis radiator,″ German Microw. Conf. (GeMIC), pp. 1-4, March 2009.
[85] C.-T. Chuang and S.-J. Chung, ‶Synthesis and design of a new printed filtering antenna,″ IEEE Trans. Antennas Propag.n, Vol. 59, No. 3, pp. 1036-1042, March 2011.
[86] C. R. Paul, Electromagnetic Compatibility, Wiley Inter-Science, Hoboken, NJ, Ch. 7, p. 436, 2006.
[87] R. K. Hoffmann, Handbook of Microwave Integrated Circuits, Artech House, Norwood, MA, Ch. 13, pp. 368-370, 1987.
[88 ] Bluetest, Gothenburg, Sweden, Reverberation test systems [Online]. Available: http://www.bluetest.se/products/reverberation-test-systems
[89] S. Rogers, ‶Defining a MIMO antenna configuration for vehicle testing,″ ASCOM, July 2010.
[90] David K. Cheng, Field and Wave Electromagnetics, 2nd ed., Ch. 11, Addison Wesley, New York, p. 612, 1989.
[91] David M. Pozar, Microwave Engineering, 4th ed., Ch. 11, Wiley, NJ, p. 664, 2012.
[92] R. A. Bhatti, S. Yi, and S.-O. Park, ‶Compact antenna array with port decoupling for LTE-standardized mobile phones,″ IEEE Trans. Antennas Wireless Propag. Lett., Vol.8, pp. 1430-1433, 2009.
[93] S. W. Su, ‶Very-low-profile monopole antennas for concurrent 2.4- and 5-GHz WLAN access point applications,″ Micro. Opt. Technol. Lett., Vol. 51, pp. 2614-2617, 2009.
[94] S.-W. Su, and C.-T. Lee, ‶Printed, integrable, dipole-slot diversity-antenna system for compact, 5-GHz WLAN access point,″ Micro. Opt. Technol. Lett., Vol. 53, pp. 1087-1093, 2011.
[95] S.-M. Wang, L.-T. Hwang, F.-S. Chang, and C.-F. Liu, ‶Design of high port isolation access point MIMO system using centrally located hexahedron,″ Electron. Lett., Vol. 54, pp. 248-249, Feb. 2014.
[96] M.-C. Huynh and W. Stutzman, ‶Ground plane effects on planar inverted-F antenna (PIFA) performance,″ IEE Proc. Microw. Antennas Propag., Vol. 150, No. 4, pp. 209-213, Aug. 2003.
[97] M. F. Abedin and M. Ali, ‶Modifying the ground plane and its effect on planar inverted-F antennas (PIFAs) for mobile phone handsets,″ IEEE Antennas wireless propag. Lett., Vol. 2, pp. 226-229, Feb. 2003.
[98] S.-W. Su and C.-T. Lee, ‶Printed two monopole-antenna system with a decoupling neutralization line for 2.4-GHz MIMO applications,″Micro. Opt. Technol. Lett., Vol. 53, No. 9, pp. 2037-2043, Sep. 2011.
[99] S. Lu, H. T. Hui, and M. Bialkowski, ‶Optimizing MIMO channel capacities under the influence of antenna mutual coupling,″ IEEE Antennas Wireless Propag. Lett., Vol. 7, pp. 287-290, 2008.
[100] C. Waldschmidt, S. Schulteis, and W. Wiesbeck, ‶Complete RF system model for analysis of compact MIMO arrays,″ IEEE Trans. Veh. Technol., Vol. 53, pp. 579-586, 2004.
[101] X. Chen, P.-S. Kildal, and J. Carlsson, ‶Measurement uncertainties of capacities of multi-antenna system in Anechoic chamber and Reverberation chamber,″ 8th Int. Symp. Wireless Commun. Syst., pp. 216-220., Nov. 2011
[102] K. Yu, M. Bengtsson, B. Ottersten, D. McNamara, P. Karlsson, and M. Beach, ‶Modeling of wide-band MIMO radio channels based on NLoS indoor measurements,″ IEEE Trans. Vehic. Technol., Vol. 53, No. 3, pp. 655-665, May 2004.
[103] J. G. Kostas and B. Boverie, ‶Statistical model for a mode-stirred chamber,″ IEEE Trans. Electromag. Compat., Vol. 33, No. 4, pp. 366-370, Nov. 1991.
[104 ] P.-S. Kildal and K. Rosengren, ‶Correlation and capacity of MIMO systems and mutual coupling, radiation efficiency, and diversity gain of their antennas: simulations and measurements in a reverberation chamber,″ IEEE Commun. Mag., Vol. 42, No. 12, pp. 104-112, Dec. 2004.
[105] X. Chen, P.-S. Kildal, J. Carlsson, and J. Yang, ‶Comparison of ergodic capacities from wideband MIMO antenna measurements in reverberation chamber and anechoic chamber,″ IEEE Antennas Wireless Propag. Lett., Vol. 10, pp. 446-449, 2011.
[106] M. Karaboikis, C. Soras, G. Tsachtsiris, and V. Makios, ‶Compact Dual-Printed Inverted-F Antenna Diversity Systems for Portable Wireless Devices,″ IEEE Antennas Wireless Propag. Lett., Vol. 3, pp. 9-14, 2004.
[107] A. Scannavini, L. J. Foged, N. Gross, and P. Noren, ‶OTA measurement of wireless devices with single and multiple antennas in anechoic chamber, ″The 8th European Conf. Antennas Propag. (EuCAP), pp. 3495-3499, 2014.
[108] Legend Reference Green Antenna Pte Ltd., Available: http://green-antenna.com/web/?q=node/7
[109] Legend Reference, Available: http://www.cisco.com/c/en/us/products/collateral/wireless/aironet-1250-series/white_paper_c11-671769.html
[110] C. V. Gagern, ‶New wireless technologies and OTA measurements,″ The 2nd European Conf. Antennas Propag. (EuCAP), pp. 1-4, 2007.
[111] L. Garcia-Garcia, B. Lindmark, N. Jalde’n, and C. Orlenius, ‶MIMO capacity of antenna arrays evaluated using radio channel measurements, reverberation chamber and radiation patterns, ″ IET Microw., Antennas Propag., Vol. 1, No. 6, pp. 1160-1169, Dec. 2007.
[112] J. F. Valenzuela-Valdes, A. M. Martinez-Gonzalez, and D. A. Sanchez-Hernandez, ‶Emulation of MIMO non-isotropic fading environments with reverberation chamber,″ IEEE Antennas Wireless Propag. Lett., Vol. 7, pp. 325-328, 2008.
[113] N. Olano, C. Orlenius, K. Ishimiya, and Y. Zhinong, ‶WLAN MIMO throughput test in reverberation chamber, ″ Available: http://publications.lib.chalmers.se/records/fulltext/70869.pdf.
[114] Legend Reference, Available: http://mwrf.com/materials/improve-pcb-shielding-portable-devices.
[115] Legend Reference, Available: http://www.microwavejournal.com/ articles/ 9873- embracing- complexity- mimo- over- the- air- testing- with- the- reverberation- chamberv =preview.
[116] K. Rosengren, P.-S. Kildal, C. Carlsson, and J. Carlsson, ‶Characterization of antennas for mobile and wireless terminals in reverberation chambers: Improved accuracy by platform stirring,″ Microw. Opt. Technol. Lett., Vol. 30, No. 6, pp. 391-397, Sep. 2001.
[117] P.-S. Kildal and C. Carlsson, ‶Detection of a polarization imbalance in reverberation chambers and how to remove it by polarization stirring when measuring antenna efficiencies,″ Microw. Opt. Technol. Lett., Vol.34, no2, pp.145-149, July 2002.
[118] C. Orlenius, P.-S. Kildal, and G. Poilasne, ‶Measurements of total isotropic sensitivity and average fading sensitivity of CDMA phones in reverberation chamber,″ IEEE Int. Symp. Antennas Propag. Soc., Vol. 1A, pp. 409-412, 2005.
[119] P.-S. Kildal and C. Carlsson, ‶Comparison between head losses of 20 phones with external and built-in antennas measured in reverberation chamber,″ IEEE Int. Symp. Antennas Propag. Soc., pp.436-439, 2002.
[120] A. Wolfgang, W. Carlsson, C. Orlenius, and P.-S. Kildal, ‶Improved procedure for measuring efficiency of small antennas in reverberation chambers,″ IEEE Int. Symp. Antennas Propag. Soc., Vol. 4, pp.727-730, 2003.
[121] A. Wolfgang, C. Orlenius, and P.-S. Kildal, ‶Measuring output power of Bluetooth devices in a reverberation chamber,″ IEEE Int. Symp. Antennas Propag. Soc., Vol. 4, pp. 735-738, 2003.
[122] J. F. Valenzuela-Valdes, A. Murcia, M. A. Garcia-Fernandez, and A. M. Martinez-Gonzalez, and D. A. Sanchez-Hernandez, ‶The influence of efficiency on receive diversity and MIMO capacity for Rayleigh-fading channels,″ IEEE Trans. Antennas Propag., Vol. 56, No. 5, pp.1444-1450, May 2008.
[123] K. Ogawa, T. Matsuyoshi, and K. Monma, ‶An analysis of the performance of a handset diversity antenna influenced by head, hand, and shoulder effects at 900 MHZ: Part I—Effective gain characteristics,″ IEEE Trans. Veh. Technol., Vol. 50, No. 3, pp. 830–844, May 2001.
[124] Rod Waterhouse, Printed Antennas for Wireless Communications, John Wiley & Sons, Ltd., Pharad, MD, USA, Ch.15, 2007.
[125] J. N. Pierc and S. Stein, ‶Multiple diversity with non-independent fading, ″ Proc. IRE, Vol. 48, No.1, pp. 89-104, Jan. 1960.
[126] P.-S. Kildal, K. Rosengren, J. Byun, and J. Lee, ‶Definition of effective diversity gain and how to measure it in a reverberation chamber,″ Microw. Opt. Technol. Lett., Vol. 34, No. 1, pp. 56-59, July 2002.
[127] K. Rosengren and P.-S. Kildal, ‶Study of distributions of modes and plane waves in reverberation chambers for the characterization of antennas in a multipath environment,″ Microw. Opt. Technol. Lett., Vol. 30, No. 6, pp. 386-391, Sep. 2001.
[128] Per-Simon Kilda and Kent Rosengren, ‶Correlation and capacity of MIMO systems and mutual coupling, radiation efficiency, and diversity gain of their antennas: Simulations and measurements in a reverberation chamber,″ IEEE Commun. Mag., pp.104-112, Dec. 2004.
[129] K. Rosengren and P.-S. Kildal, ‶Radiation efficiency, correlation, diversity gain and capacity of a six-monopole antenna array for a MIMO system: Theory, simulation and measurement in reverberation chamber,″ IEE Proc. Microw. Antennas Propag., Vol. 152, No.1, pp. 7-16, Feb. 2005.
[130] D. Gesbert, M. Shafi, D.-S. Shiu, P. J. Smith, and A. Naguib, ‶From theory to practice: An overview of MIMO space–time coded wireless systems,″ IEEE J. Sel. Areas Commun., Vol. 21, No. 3, pp. 281-302, Apr. 2003.
[131] Manouan Aka Constant Niamien, Sylvain Collardey, Ala Sharaiha, Kourosh Mahdjoubi,‶ Printed inverted-F antennas over lossy magnetodielectric materials: Theoretical approach and Validations,″ Microw. Antennas Propag. ( IET), Vol. 8 , No.7, pp. 513-522, 2014.
[132] J.-W. He and K.-S. Chung,‶Design Considerations of Planar Inverted-F Antenna (PIFA) on a Finite Ground Plane,″ 10th Asia-Pacific Conf. Commun./ 5th Int. Symp. Multi-Dimensional Mobile Commun., pp. 655-659, 2004.
[133] Buon Kiong Lau and Zhinong Ying, ‶Antenna design challenges and solutions for compact MIMO terminals,″ Int. Workshop Antenna Technol. (iWAT), pp.70-73, 2011.
[134] Chen Xin, ‶Wireless communications trends,″ Int. Conf. Wireless Networks, Inf. Systems, pp. 278-281, 2009.
[135] T. L. Marzetta, ‶Noncooperative cellular wireless with unlimited numbers of base station antennas,″ IEEE Trans. Wireless Commun., Vol. 9, No. 11 pp. 3590-3600, Nov. 2010,.
[136] F. G. Larsson, F. Tufvesson, O. Edfors, and T. L. Marzetta, ‶Massive MIMO for next generation wireless system,″ IEEE Commun. Mag., Vol. 52, No. 2, pp. 186-195, Feb. 2014.
[137] A. Farhang, N. Marchetti, F. Figueiredo, and J. P. Miranda, ‶Massive MIMO and waveform design for 5th generation wireless communication systems,″ 1st Int. Conf. 5G for Ubiquitous Connectivity, pp. 70-75, 2014.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.190.156.80
論文開放下載的時間是 校外不公開

Your IP address is 18.190.156.80
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code